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Expanded Executive Summary and Key Findings

The ultimate resource issue addressed with thisstinyation was detection of
anthropogenic impacts on the coastal environm&he tool developed within the scope
of our project was a periodicity removal and ewgtection analysis which allows for
removal of natural cylic periodicity and known matalogical forcing on water quality
parameters. Once the periodicity has been remdkerk are often anomalies in the
series. Unusual events in the data series anestieg sources of variability. Itis
important to identify and quantify events in enwvingental time series in order to gain a
better understanding of the ecosystem. Eventsidmithe result of natural or human
influences. To try to identify their causes, detdevents can be compared to known
meteorological events, such as rainfall, droughtrapical storm. Unusual events
sometimes reveal processes operating at higherairapace scales. We addressed
statistical procedures that are capable of lendiagagers the ability to discriminate
between natural forcing variable and new humanaadwr dramatic climate forcing.
These methods are superior to previously publistnedlyses because they are more
accurate and amenable to large datasets with laigability. Unfortunately, due to the
overwhelming statistical challenges these datagptest was not within the scope of this
project to bring this method directly to the manage organized training sessions. We
did, however, correspond with NERRs managers tdeguihich analyses would be most
beneficial to mining these long-term water quatitasets.

This report explores methods for modeling peri@igironmental time series data from
estuaries, and for detecting “events” in environtaktime series. Both classical
parametric and new, nonparametric methods arederesl. While humans utilize and
benefit from estuarine resources, they also gréaiilyence these ecosystems. Both
human and natural influences cause estuarine t&totde very dynamic and vulnerable
ecosystems. In order to quantify human influenites,necessary to determine baseline
measures of water quality in estuarine ecosystems.

Increased awareness of the implications of bothamand natural disturbances resulted
in the passage of the Coastal Zone ManagemennAld42. This in turn led to the
establishment of the National Estuarine Researdefi®e System (NERRS). The
NERRS is a network of 27 protected areas in the &8h8 Puerto Rico established for
long-term research, water-quality monitoring, addation. These reserves cover over
one million acres of protected estuarine watergiithg wetlands, and surrounding
uplands (Owen and White 2005). The five reservethe Southeastern Atlantic coast
are the focus this study including North CaroliNarth Inlet-Winyah Bay, ACE Basin,
Sapelo Island, and Guana Tolomata Matanzas (GTM3RE.

In 1995, the NERRS established the System-Wide ddng Program (SWMP),
designed to monitor a standard collection of wateality variables across all reserves.
The variables that were initially chosen to be rtameid beginning with Phase | in 1996
were pH, specific conductivity, temperature, tuityidsalinity, depth, and dissolved
oxygen (DO; mg/L and also percent saturation, #tie of the dissolved oxygen content
to the potential capacity at that temperature debéion, expressed as a percentage).



These particular variables were selected to medkareater quality for both estuarine
species and humans. Measurements for each vaabtEbtained at 30-minute intervals
at 2-4 sites at each of the NERRS SWMP reservesatiag January 1, 1995 (Sanger et
al. 2002). These automatic data loggers relay areagents to internal memory and can
run unattended for weeks at a time, after whicly Hre removed, cleaned, recalibrated,
and redeployed. As one example, Figure 2 showdepth, water temperature, salinity,
and DO (percent saturation) at the East Cribbitegcdithe North Carolina reserve near
Wilmington, North Carolina for the #8SWMP deployment, June 30 — July 7, 2004.

Figure 2: Water Quality Data for a Single Deployine
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In these and many other environmental time sepiesodicity is dominant. In the
NERRS water quality data, we believe this periggishould be modeled for the most
part as signal, with deterministic origin, drivepndravitational and solar energy forces.
In order to detect, measure, and understand thedpeinfluences and events in
estuarine water quality data, steps should firshade to quantify and understand the
effects of these natural periodic influences.



Notice the comparatively low readings of tempemtsalinity, and dissolved oxygen late
in day 913 in Figure 2. Since the levels of thixsee water quality variables appear to
be lower than at the same time on other days idépéoyment, this is a possible event.
Once the periodicity has been removed, we canrtsitidy these series to determine if
these disturbances are indeed unusual events.

The first two suggested applications of the analysre to evaluate short-term impacts
on estuarine salinity during strong rain events @aithed storms. Results from these
analyses are also discussed within this final rteqoad references within. While many
short-term variables responded to relatively smeadbrded rain events, we did not detect
long-term signatures within the water quality datem any of the hurricanes that were
evaluated in our analyses.

Finally, all necessary statistical tools requirectcomplish this effort are described in
this report and are most are available free onntieenet. Details of the statistical
modeling efforts are contained in the Universitysoiuth Carolina statistics department
graduate student thesis and dissertation and pgjalinnal articles (Autin, 2007, Li,
2007, Autin and Edwards, submitted).

Key Findings

* Generalized additive models (GAMSs) are a very psamg method for modeling
estuarine water quality data, and more generallyafy time series with strong
and potentially non-sinusoidal signals of knowniqekr

» For the NERRS data, classical harmonic regressidmiques work well for the
analysis of depth data; however, they are not @sfaetory for analysis of other,
less regular, water quality variables.

* The GAMs are also more automatically adaptive &aglire less user-
intervention than the harmonic regression models.

* The ease of their use in R also makes them vergading. Not only are they
adaptive and user-friendly, but they are also nafipitive in terms of
computation time.

* Efron’s local false discovery rate algorithm wateetfive is detecting events in
the ACE Basin reserve water quality data.

* The model developed from the first ACE Basin SKEEBB) suggests that small
total precipitation and large mean and mean alsadleviation of landward wind
results lead to a large drop in salinity.

* For the second ACE site (ACEMC), the model predictd short rainfall
duration, large total precipitation, small meanaib® deviation of precipitation
and large mean absolute deviation of landward wlumihg rainfall period should
cause a large drop in salinity.

» Hurricanes impacts on water quality parametersifiRRs site within the storm
path indicated that the water quality changes wbhogt-term and generally all
parameters returned to baseline level cycles w#Bihrs.



Abstract

Determining the role of anthropogenic forces amuhalic variability on estuarine water
guality requires the ability to predict and distimngh effects of stochastic events (e.g.,
hurricanes) vs. typical estuarine periodicities] emreveal how periodicities are
influenced by large-scale, climatic variability.tlnrese and most other environmental
time series, periodicity is dominant.

In order to detect, measure, and understand thedpeinfluences and events in
estuarine water quality data, steps should firsnade to quantify and understand the
effects of these natural periodic influences.

Our specific objectives were to remove cyclic peiedgy from NERRS environmental
time series as a source of variation to faciligtert-term and long-term event detection.
Then using the periodicity free data, identify @u@ntify events in NERRS
environmental time series in order to gain a betteterstanding of the ecosystem. To
evaluate short-term storm effects, we sought teldpva statistical model diigh rainfall
and wind impacts upon water-quality parametersni$al depth) within a model
estuarine ecosystem (ACE NERR site) in the soutegat)S. Finally, we examine
storm tracks and meteorological history of namegital systems between 1996-2004,
in order to determine the frequency, duration, iatehsity of systems that potentially
impacted water quality at NERR SWMP sites.

To accomplish our first objective to remove peraiyi, we compare statistical methods
including; harmonic regression, GAMs with cubicneggion splines, and GAMs with
cyclic regression splines using water quality datifected from the National Estuarine
Research Reserve System (NERRS). Once the petyoldas been removed from
ecological datasets, there is likely still somepatgl variation, such as unusual events, in
the time series. Unusual events and disturbamegsnportant and interesting sources of
variability in ecological datasets. Several methack used in event detection including
Shewhart Control Chart Method and Efron’s locaséadliscovery rate. For the third
objective, rainfall and wind impact were evaluatisthg a SAS program, 420 rainfall
events in total have been extracted from the aaigimeteorological data at ACE Basin
between July 1, 2001 and December 31, 2005. Ta¢ dbjective was to provide a
presentation format to visualize water quality aeswithin NERRs sites exposed to the
track of a hurricane.

We have investigated the use of classical harmmgiession models and nonparametric
harmonic regression models (generalized additiveels) for estuarine water quality
data. For the NERRS data, classical harmonic regmesechniques work well for the
analysis of depth data; however, they are not isfaetory for analysis of other, less
regular, water quality variables. The GAMs showajipotential for these applications.
Additionally , we adapted Efron’s local false disery rate methods for detecting events
in estuarine water quality data. We then usecttleat detection algorithm to detect
events in the water quality data collected at tiEAasin NERRS reserve. Once events
are detected in a time series, causes for the £8apould be explored. Water quality
events can be compared to known meteorologicalteysuch as rainfall events,
droughts, and El Nifio/La Nifia climatic cycle effect



I ntroduction

Demographic pressures increasingly affect coastalurces. More than half of the
nation’s citizens live in coastal areas, which artdor only 13% of the nation’s
acreage. In the next 15 years, 27 million peopi&Q% of the US population increase),
are predicted to move into the coastal zone (B280R). Associated with these changes
in population distribution, are developmental aadistal practices that negatively impact
ecological systems. The NERRS SWMP provides longrtaonitoring of water quality,
to gather baseline data for estuarine systemsrhgtbe impacted. Estuarine water
guality is also influenced by the interaction ahaspheric, oceanic, watershed, and
anthropogenic forces. Thus, pronounced variabilitgurs across a wide range of
temporal and spatial scales.

The analysis of long-term, water-quality data impticated by the uncertainty of
measurements made across multiple environmentiaiss@ae., climatic to estuarine). For
instance, climate variability is typically recorded global, hemispheric, and regional
scales. However, to effectively manage environmersources, it is necessary to
analyze data at the ecosystem level (Preston, 20@4¢rmining the role of climatic
variability on estuarine water quality requires #imlity to predict and distinguish effects
of stochastic events (e.g., hurricanes) vs. tymsalarine periodicities, and to reveal how
periodicities are influenced by large-scale, climaariability. In these and most other
environmental time series, periodicity is dominaimt.the NERRS water quality data, this
periodicity is modeled as signal, with determimigirigin, driven by gravitational and
solar energy forces. In order to detect, measun@ understand the aperiodic influences
and events in estuarine water quality data, stepsld first be made to quantify and
understand the effects of these natural periodigances.

In recent years, the SAB has experienced a rangetbflarge-scale, longer-term
climatological conditions and short-term storm @sehat have greatly impacted its
estuaries. The longest drought in the past ~50 y&éaple, 2003) spanned 1998-2002,
and was associated with a strong La Nifia evenhdur®98-2001(Lawrimore, 2001,
Waple, 2002). In mid-2002, the drought ended rgpidith a dramatic rainfall increase;
an El Nifio event occurred from late 2002 through2(Q_evinson, 2004). [El Nifio

brings moisture to the southeastern U.S., andtisaraducive to hurricane formation in
the Atlantic. Prolonged La Nifia events are coreslatith drought and increased Atlantic
hurricane formation.] Superimposed upon this lasgale climatic variability, was
pronounced, inter-annual variability in storm-ewefiequencies. In the fall of 1999, three
hurricanes, includin@ennis (Aug. 24-Sept. 5}loyd (Sept. 14-17) anttene (Oct. 13-

16), impacted the southeast, leading to unpreceddldoding in portions of North
Carolina and the northeastern coastal countie®othiSCarolina (Bales, 2003; Peierls,
2003).

The effects of climatic variability, across a ramjescales, on estuarine water quality
dynamics are thus highly relevant to the SouthmitaBight. The development of

specific, quantitative techniques to assess tlexesfiof stochastic events and larger-scale,
climatic conditions will be valuable to estuarirmbgists and coastal resource managers



alike. This will provide the necessary tools foalzing long-term water quality data
sets, in order to better understand the factoesaifffg variability across space and time.

Objectives

The research analyses addressed complexities lmagivigy effects of climatic variability

by the first addressing cyclic periodicity and eivéetection, and then using these tools to
conduct intensive investigation of short-term samtlt events including rainstorms and
named tropical systems. Our analyses focused orkh®f these processes at the scale
of individual estuarine ecosystems (NERR siteshwithe South Atlantic Bight.

Our specific objectives were to:

1. Remove cyclic periodicity from NERRS environrtarime series as a source of
variation to facilitate short-term and long-terneat/detection.

2. ldentify and quantify events in NERRS enviromtaétime series in order to gain a
better understanding of the ecosystem.

3. Develop a statistical model lofgh rainfall and wind impacts upon water-quality
parameters (salinity, depth) within a model estegcosystem (ACE NERR site) in the
southeastern US.

4. Examine storm tracks and meteorological histdnyamed tropical systems between
1996-2004, in order to determine the frequencyatiom, and intensity of systems that
potentially impacted water quality at NERR SWMRsit

* Objectives 1 and 2 will be used to facilitate inigetion of events that could be
the result of natural or human influences. Taadrydentify their causes, detected
events are initially compared to known meteorolab@vents, such as rainfall,
drought, or tropical storm. Objectives 3 and 4ufon rainfall, wind and named
storm events on estuarine water quality parameters.

» Reports and publications generated by Objectivésfe supported by
implementing available web-based, analytical tdotduture data modeling
(Autin 2006, 2007, Li, 2007).

Methods

Objective 1. Compare methods to remove cyclicquieity including; harmonic
regression, GAMs with cubic regression splines, @Ad\s with cyclic regression
splines using water quality data collected fromNa¢ional Estuarine Research Reserve
System (NERRS).

The use of statistical models in tidal predictisased upon the theory that all tidal
components are independent and that their periedsrewn. The periods of the major
tidal constituents (Table 1) have been calculatexitd constant and astronomical forces
(see e.g. Defant 1958). Semidiurnal components haidal cycle that consists of two
high and two low tides of approximately the samigtmeper lunar day (~24.84 hours).
Diurnal components have a tidal cycle that usuatlysists of one high tide per day.



Classical and proposed methods for modeling periedvironmental time series are
compared using data from southeastern NERRs d@ikzssical harmonic regression
analysis, used by physical oceanographers for @scadsumes that effects of periodic
components can be modeled by weighted sums ofrsames of known periods.
Generalized additive models (GAMs) allow more flekiy in the form of the regression
function. They permit parametric, semiparame#fii@] nonparametric regression
functions of the predictor variables. Applicatiafsionparametric harmonic regression
are presented with analyses for the SWMP data N&RRs sites.

Table 1: Major Components of Tidal Forces

Designation Symbol Period Description

Semidiurnal M, 12.4206012 Main lunar (semidiurnal) constituent

Semidiurnal S, 12.0000000 Main solar (semidiurnal) constituent

Semidiurnal N 12.6583482 Lunar due to monthly variation in moon’s
distance

Semidiurnal K. 11.9672348 Soli-lunar due to changes in declination of sun
and moon

Diurnal Ki 23.9344697 Soli-lunar due to changes in declination of sun
and moon

Diurnal O 25.8193417

Main lunar (diurnal) constituent

B!urna: P1 gjggggggg Main solar (diurnal) constituent
lurna St : Daily constituent
Long Period M 327.858984 Moon'’s fortnightly constituent

Note: Period is given in solar hours.

Harmonic Regression

Harmonic regression uses the sine curve to acdouperiodic patterns. Multiple
harmonic regression is derived from the modelingvaf or more additive sine functions
representing different periods. The use of mudtiphrmonics allows (theoretically) for
any periodic function of periogto be arbitrarily well-approximated in this manner
given enough terms. The accuracy of the approximamproves by increasing the
number of harmonics, but its scientific meaningfien unclear (Piegorsch and Edwards
2002). In practice, one or two harmonics are @ihycused per period for analysis of
estuarine data by physical oceanographers.

Tidal components that have the same designatioa pesods of similar length.
According to the oceanographic literature, in ordenalytically separate these similar
components from each other, series of ample lemgi$t be available. Specifically,
according to Foreman and Henry (1989):

(1) 328 hours = 13.67 days are needed to distinguism® K

(2) 355 hours = 14.79 days are needed to distinguisin® MV,



(3) 182 days are needed to distinguishk, and S
(4) 182 days are needed to distinguishakd $.

In statistical terms, this inseparability of teramresponds to severe collinearity in the

multiple harmonic regression models for short serié/e adopt the above guidelines in
order to ensure that there will not be unacceptatsbyng collinearity among the similar

periodic components, in both the classical and amapetric approaches.

Generalized Additive Models

Modern generalized additive models (Hastie andhirhai 1990) allow more flexibility

in the form of the regression function. As desedilin detail by Wood (2006), a
univariate functiori(x) of the predictox can be approximated by a spline functggx).

A polynomial regression spline is a type of smoothat fits piecewise polynomials to
data. The piecewise polynomials are connectedatspecified x-locations called knots,
and the spline is typically required to have na@diginuity, and to be smooth, at knots.
Knots must also be specified for the endpointhefderies. The difficulty in using this
technique is the determination of the number andtlons of knots to use.

Objective 2. Develop a data-driven event detecigorithm using Efron’s (2006) idea
of local false discovery rates to detect eventsater quality time series.

Once the periodicity has been removed from ecobbgiatasets, there is likely still some
atypical variation, such as unusual events, irtithe series. Unusual events and
disturbances are important and interesting sowteariability in ecological datasets.
Understanding their causes can lead to better staaeling of the ecosystem. Events can
be defined as sequences of observations that arelxably higher or lower than would

be expected given the distribution of the “noistn’the analysis of time series data, there
are two characteristics that are most importaxteiscribing an event: duration and
intensity. Jassby and Powell (1990) believe timatsual events are among the most
complicated, yet most crucial, phenomena that ggst® must handle effectively. The
timing, frequency, length, and intensity of evemisy be important in determining long-
term changes in ecosystem structure and functiennfderg, 1993). Although it is
important to identify and quantify these eventgeotive and efficient methods for doing
so are not readily available for ecological data.

Allen et al. (1996) adapted quality control methoalglely used in industry, to detect and
guantify unusual events in year-long data set®ctdll at the North Inlet-Winyah Bay
Reserve in South Carolina. They used the Shev@wnrtrol Chart Method to define four
types of events according to intensity and duratidhis method uses the residuals from
the removal of periodicity and long-term trendsiirthe data. Extreme residuals (or
series of residuals) are flagged if they wouldrbprobable given the magnitude of
typical variability as measured by the standardaten. Following classical industrial
process control rules, Allen et al. defined foydy of events, types A, B, C, and D:

(A) One point at least 3 standard deviations abovelombthe mean;



(B) Two out of three consecutive points at least 2dsiechdeviations above or
below the mean;

(C) Four out of five consecutive points at least 1lamdard deviations above or
below the mean;

(D) Eight consecutive points at least 0.2 standardadievis above or below the
mean.

These threshold deviation levels are standardmtrabchart methods, chosen such that
approximately only 1 in 400 detected events agefabsitives under a Normal errors
assumption. The Shewhart Control Chart Method bgeflllen et. al. (1996) only
allowed for four types of events. For each evénliftering length, a new threshold
criterion was defined. We would like to develomare automated and comprehensive
method for detecting events of almost any lengthis gives rise to a large-scale
multiple-hypothesis testing situation motivating #tontrol of false discovery rate,
discussed in the next section.

Traditionally, family-wise error rate (FWER) hasdpeused to measure the overall error
rate under the multiple-hypothesis test settinge FWER is defined as the probability
of making one or more false rejections among aliste The significance levelis chosen
such that FWER a, and then a rejection region is found that mans#evelo FWER.

In many circumstances, FWER is too strict, esphbciat a large number of tests.

Since the methods that use p-values rely on nplbthesis tail areas, they are extensions
of traditional frequentist hypothesis testing. dafi(2004) presents empirical Bayes
methods for large-scale false discovery rate arglyBhe local false discovery rate
provides a useful method for identifying “interesfi (non-null) cases. we present a
data-driven event detection algorithm that utiligdson’s local false discovery rate. The
performance of this algorithm is investigated virawdation studies. The algorithm is
then used to detect events in the ACE Basin reseater quality data.

Objective 3. Develop a statistical model of higinfall and wind impacts upon water-
quality parameters (salinity, depth) within a moestuarine ecosystem (ACE NERR site)
in the southeastern US.

The meteorological data has been recorded at Beniietint station every 15 minutes
since July 1, 2001. The original yearly data detsveen 2001 and 2005 have been
acquired from the CDMO website. In general, we mefone rainfall event like this: the
starting point is when the first non-zero precit)ita occurs after two consecutive hours
of zero precipitation. The ending point is when tast non-zero precipitation occurs
before two consecutive hours of zero precipitate also only consider events which
last at least a half hour.

Since rainfall events which last only 15 minute®duce missing values for mean

absolute deviation variables, the rainfall eventgqet have been defined as the events
whose durations are at least 30 minutes. Using & Bdgram, 420 rainfall events in
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total have been extracted from the original metegioal data at ACE Basin between
July 1, 2001 and December 31, 2005 (Li, 2007).

Objective 4. Examine storm tracks and meteorobidicstory of named tropical systems
between 1996-2004, in order to determine the frequeduration, and intensity of
systems that potentially impacted water qualitNBRR SWMP sites.

Evaluate the impact of named storms on the soutreeNERRS sites. To date, fourteen
named storms have been graphically depicted imaeniormat which allows
simultaneous viewing of key meteorological datéoasing variables and selected
responding water quality parameters.

Results

Removing periodicity from NERRS SWMP data.

This analysis focused on the NERRS reserves istheheast: North Carolina (NOC),
North Inlet-Winyah Bay (NIW), ACE Basin (ACE), Sdpdsland (SAP), and Guana
Tolomata Matanzas (GTM). All data is availabletbe Centralized Data Management
Office website (CDMO 2007). In part because offpuad shifts at redeployments (e.g.
Figure 1), and in part to allow for changes in stierm periodic signals over seasons,
our analysis of the water quality data from thesserves is broken into two phases.
Phase | estimates and removes short-term perioffiences from each deployment of
the data. Phase Il estimates and removes the lgperiadicity and deployment effects
from the phase | residuals.

Figure 1: Raw Depth Data for Several Deployments
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The most important semidiurnal and diurnal constits are listed in Table 1. For the
phase | analysis of the NERRS SWMP deploymentemdgth 7 to 30 days, we separate
and estimate four periodic signals: Diel (24-hpariod = &), M2, Np, and Q. Due to
collinearity caused by limited series length, tiséireated Diel signature is actually the
sum of the effects of Diel +,S+ P, + K; + K, At most NERRS sites, for most
deployments, the Diel (D) and Aignals are by far the most important (Sanger.et a
2002).

The data is fit with a “floating” GAM with cyclicagression splines for each of the four
periodic components:

Y, = B, + f,(t;) + f,(Dstage, ) + f,(M ,stage, ) + f,(N,stage ) + 5(O,stage, ) + &, , (1)

wheret; is time (in days) of thé" observatiori = 1, 2, ...,n, f; is a slow-changing trend
curve modeled with a cubic regression splfiteis the intercept of the trend curve, &énd

G = 2, 3, 4, 5) is the cyclic regression spline eufer each of the four periodic
components. The errossare assumed to have mean zero. For each pensdigexsion
spline, the user-specified dimension of the basisne more than the maximum degrees
of freedom that the term can have. After some axpmtation the dimension of the basis
for f; was set to 4 to prevehtfrom absorbing cyclicity from other terms. Fockaf the
cyclic regression splines, the default of 10 wasduer the dimension of the basis.

As a detailed example of the phase | analysis,identhe water depth (meters) data from
the East Cribbing site of the NOC reserve for tneeJ30 — July 7, 2004. Figure 2 shows
the graphical summary of the model (1) fit: thev idata with fitted GAM, residual plot,
and the profile plots of the four periodic compoisen

The model fits the data very well, which is typiéal analyses of the depth variable. The
M. tidal constituent is dominant, but note the asytnynm the M profile plot. As is
evident here, it is often the case that the peciadimponents are far from being
sinusoidal in shape. For this reason, we belidassal harmonic regression is not
appropriate for much of the NERRS-SWMP water qualdta unless a large number of
harmonics are used for each period, which is nmtéa.

Non-sinusoidal periodic components such as th@idfile seen in Figure 3 are pervasive
throughout the data analyses of the CICEET NERR&yst Further examples are shown
in Figures 4-5. Each figure contains the raw dath the fitted GAM (1), a residual plot,
and the fits for the four periodic components. urégg3 shows the graphical summary of
the phase | analysis for dissolved oxygen (measasgaercent saturation) data collected
during the July 18 — August 1, 2002 deploymentat $t. Pierre site of the ACE Basin
reserve. The Mcomponent has a double-bump in the pafathe curve, and the Diel
component has some slight curvature during thepuoition of the Diel cycle.
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Figure 2: Depth Phase | Analysis Example
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Figure 3: Percent Saturation Phase | Analysis Eam
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A graphical summary of a phase | analysis for gglifparts per thousand) data is shown
in Figure 4. Data was collected during the Decenii#20, 2002 deployment of the
Pine Island site of the GTM reserve. As with the fprevious examples, the periodic
components are not sinusoidal. The, Momponent, in particular, displays some
curvature during the descent from peak to trougthefcycle and is almost linear from
trough to peak.

Figure 4: Salinity Phase | Analysis Example
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A graphical summary of a phase | analysis for dissboxygen (mg/L) data is shown in
Figure 5. Data was collected during the June 1,4t995 deployment of the Flume Dock
site of the SAP reserve. Both the Diel angddmponents have a great deal of curvature
resulting in unusual shapes, especially in thecinponent. The £and N constituents
areunusually strong in this deployment, as is oftemdase at this particular site.
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Since the periodic components of the water qudktia often do not appear to be
sinusoidal, this suggests that classical harmagoeassion analysis may not be
appropriate for this data. The time series fonater quality variables were fit with
model (1) for each deployment containing at leasea days of data. Doing this for each
site of each reserve in the CICEET study resuttetearly 12,000 phase | analyses for
the NERRS data.

Figure 5: Dissolved Oxygen Phase | Analysis Exampl
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Phase Il Analysis
In phase Il analyses, one of our goals is to attémmodel annual periodicity. The trend
and intercept are added back to the residuals tharphase | fit of model (1) for each
deployment; these are referred to as phase | adjussiduals. Deployment effects are
removed from these by treating deployment as afacthe GAM used for the phase Il
analysis is

Yy =Byt + fl(tij )+ fz(YearSang )+5ij ! (2)
wherey;; is the phase | adjusted residual for ffleobservation from deploymentd; is
the unknown shift for thé" deployment,f; is a slow-changing trend curve modeled with
a cubic regression splingy is the intercept of the trend curve, afdis the cyclic
regression spline curve for the annual periodic moment (period 365.24 days). After
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experimentation, the dimension of the basisffawas set to 3, and the dimension of the
basis forf, was set to 5.

As an example of phase Il analysis, consider thas@h adjusted residuals for the
dissolved oxygen (percent saturation) data coltketethe Pine Island site of the GTM

reserve (2001-2004) in Figure 6. These phaseustatj residuals were fit with model

(2). Figure 7 shows the resulting estimated périadnual component superimposed on
the phase Il residuals (with the estimated anneabdic component added back in).

Figure 6: Dissolved Oxygen Phase | Adjusted Redglu
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As a second example of phase Il analysis, condliseephase | adjusted residuals for the
water temperature (degrees Celsius) data collexdtéte Debidue Creek site of the NIW

reserve (1998-2000) in Figure 8. Figure 9 shows #stimated periodic annual

component superimposed on the phase Il residuath {hie estimated annual periodic

component added back in), resulting from fitting thata with model.

Figure 8: Temperature Phase | Adjusted Residuals
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Figure 9: Temperature Phase Il Residuals with Ah@omponent
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The dissolved oxygen (measured as percent satoyaimmual periodic component shown
in Figure 7 has an unusual, non-sinusoidal sh&pssolved oxygen at this site is highest
in late winter, and remains high in late springdbefdrastically dropping in the months of
late summer/early autumn. The water temperatunearmeriodic component shown in
Figure 9 is also non-sinusoidal. At this site, thgher temperatures during the summer
last longer than the lower temperatures duringviliger. Also, the temperature drops
during autumn more quickly than it increases durapging. These periodic profiles
further strengthen the premise that nonparametacmbnic regression is more
appropriate for analyzing the NERRS water qualigtad than classical harmonic
regression

2. NERRS Data Event Detection

With datasets becoming incrementally large and d¢expan automated method of
detection of events is required to evaluate pestiishs (natural or anthropogenic). The
objective here was to detect events of varyingtlenm the NERRS water quality data.
The analysis focused on the ACE Basin Reservepbtiee largest undeveloped estuaries
on the East Coast, located just south of Charle§outh Carolina. The residuals
resulting from the phase | analyses were analysadjuhe event detection algorithm
with m={4,8,12,16} andr= 0.0001. This low value off was chosen because higher
values resulted in an implausible number of evbaisg detected in the series. Note that
the residuals used for event detection are nophiase | adjusted residuals used in phase
Il analysis. One problem with using the event digd@ algorithm for the NERRS data is
the failure of the locfdr function (as mentionedfie previous section). Although there
were 2114 phase | analyses completed for ACE Basérlpcfdr function succeeded
(using bothQ* and V*) in only 970 of those cases. R code used fonegetection can

be found in appendix of Autin (2007).

For the first example, a graphical summary of thené detection for salinity (parts per
thousand) data collected during the April 28 — N8ay 995 deployment of the St. Pierre
site of the ACE Basin reserve is presented in leigux. The three left plots correspond
to event detection usin@*, and the three right plots correspond to evetgecen using
V*. The top row shows plots of raw data, with olvs¢ions detected as event points
plotted with triangles. The middle row shows residplots with the detected event
observations plotted with triangles. The last mmmtains histograms of ttzevalues, as

well as fitted density curvesf;(z) (solid line) andrn, fo(z Ydashed line). The colored

histogram bars represent estimated non-null courite triangle on the x-axis indicates
the z-value threshold for fdr < 0.0001. The ewdetection algorithm has identified an
event that occurs during the late night of day 48d early morning of day 122.
However, the start and endpoints of the event diffethe two test statistics.
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Figure 10: ACE SP Salinity Events (Deployment 5)
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A graphical summary of the results of the detecéitgorithm for a deployment of
dissolved oxygen (measured as percent saturaichjown in Figure 11. This data was
collected during the March 3-13 deployment at tigeBay site of the ACE Basin
reserve. Using both test statistics, the algoritietected events at two separate times
during the deployment. The first event consistligh dissolved oxygen readings during
the afternoon of day 64. There is also an evehawfdissolved oxygen readings during
day 66. When using thé test statistic, a third event is detected dudiag 66, during
which dissolved oxygen readings were higher tharalus
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Figure 11: ACE BB Dissolved Oxygen Events (Depleyinl)
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Figure 12 shows a graphical summary of the resfilise event detection algorithm for a
deployment of temperature (degrees Celsius) ddiected during the June 20-29, 2004
deployment at the Big Bay site of the ACE Basireres. A higher-than-usual
temperature event was detected at the beginnitigeafeployment using both test
statistics. Similarly, a lower-than-usual temperatevent was detected at the beginning
of day 3460. Again, the test statistics diffethie length of the detected events, wWith
detecting longer events.
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Figure 12: ACE BB Temperature Events (Deployméat)1
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3. Model high rainfall and wind impacts on ACE BaSERRS sites.

The next step in our exploration is to investigegasonal patterns in the rainfall event
data. There are more rainfall events in summer {iey-September) than in winter time
(Figure 13). In order to visually assess the i@aship between rainfall events and
change of water salinity at ACE Basin, the twenghelargest rainfall events in terms of
total precipitation were selected from the 420fairevents between July 1, 2001 and
December 31, 2005. Preliminary inspections sugdehbeg total precipitation of a

rainfall event is a more significant variable th&nduration. A rainfall period was
defined as the time between two days before anddays after each rainfall event
started. Meanwhile, the water quality samplingistet ACE Big Bay (ACEBB) and

ACE Mosquito Creek (ACEMC) were selected basedata dvailability and their
locations. ACEBB (station 1) is close to the SoQ#rolina coast line and has the longest
data record at the ACE Basin. ACEMC (station 3)lase to the ACE weather station at
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Bennett’'s Point (station 0). The water quality datathese two locations were acquired
from the official site of NERR Centralized Data Maement Office.

Number of Rainfalls by month between 07/01/2001 and 12/31/2005
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Figure 13: Number of rainfall events by month besaw@®7/01/2001 and 12/31/2005

Scatterplots of water depth and salinity were gateer for each rainfall event using
Minitab. The title of each plot contains the inf@ton of water sampling station
(ACEBB or ACEMC), the rainfall total precipitatiaanking, rainfall precipitation (mm),
rainfall duration (min) and the starting time oétavent. A scatterplot of water depth is
shown above the plot of water salinity in each fegto monitor tidal stage during
corresponding rainfall period. All salinity plot§ ACEBB and ACEMC stations have the
same salinity scale from 0 to 38 ppt and from BAg@pt respectively. The left vertical
reference line in each plot stands for the stagpioigt of each rain event as the right one
stands for the ending point.

ACE Big Bay Sation

Scatterplots of water quality and salinity durthg associated 27 largest rainfall periods
were generated for ACE Big Bay station (Li, 200Rain 1 started in the middle of an
ebbing tide. There were two large drops in saliaiter the rainfall started, in synchrony
with the falling tide. The overall average saliraypears to have decreased after the
rainfall, and the salinity range per tidal cyclgagrs to have increased (Figure 14).

The information acquired from all the scatter plotshe ACEBB station is summarized
in Table 2 shown below. In the table, all rainfalents are sorted by two major
categories, the tide stages of rainfall onset &edtypes of reaction of water salinity to
the rainfall events, and each category has foucaelgories.
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ACEBB Rain 1 (158.6mm 480min) 10/10/2002 15:00
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Figure 14: Scatter plot of ACEBB water depth andhgg during the rain 1 period

Table 2: Table of the rainfall events at the ACE&8tion

Tide stage of rainfall onset

Category
High Ebb Low Flood

No obvious
change in salinity 6, 18’224’ 25, 19, 23 20, 27 17
pattern

_| n H n H

< Lasting" drop in 2,3,5,9, 10,

3 | salinity (>4 days) 11 1,4,12,22 26

o

Y]

2

& | Increase in tidal 2,3,5,9, 10,

g range 11 1,12,22 26
Temporary drop
in salinity for a 11 1,12,21, 22 15, 26 7,13,14,16
few tide cycles

23



ACE Mosquito Creek Station

The available water quality data of ACE Mosquit@€k station, (located inland near the
weather station), are dated between October 12 2060 December 31, 2005. There
were seventeen of the largest rainfalls within timee period. The largest of these storms
is depicted below to demonstrate the impact omisglat this site. Rain 2 started at mid

flood tide. The overall average salinity appearsdaee decreased after the rainfall, as did
the tidal range for salinity (Figure 15).
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Figure 15: Scatter plot of ACEMC water depth anchgg during the rain 2 period

The information acquired from all the scatter plotshe ACEMC station is summarized
in Table 3 shown below. Similar to Table 2, alhfail events are sorted by two major
categories, the tide stages of rainfall onset hadytpes of reaction of water salinity to

the rainfall events, and each category has fouraelgories.

In summary, about half of the rainfall events stdrt high tide at the ACEMC station,

which is similar to the ACEBB station. Most of trenfall events appear to have

changed the salinity pattern after the rainfallt Buolike the ACEBB station, there was no
rainfall event that caused a temporary drop imgsglfor just a few cycles at the ACEMC
station. Furthermore, it seems that rain 2 deccketmetidal range, which is very unusual.

The nonlinear model was fit to water salinity ralhtevent data of ACEBB and ACEMC

Stations using SAS PROC NLIN (Li, 2007). After ckimg the overlaid plots of
predicted and original values, the model fits theadacceptably well for descriptive

purposes, especially for ACEMC, because there werarge drops in salinity at this

station. But this model does fail to predict som&ame values at both stations.




Table 3: Table of the rainfall events at the ACEBt@&tion

Tide stage of rainfall onset
Category
High Ebb Low Flood
= .
S | No obvious
® | change in 8 17 25
S, salinity pattern
&
a _Lastl_ng drop 3.5,6,0,
=. | in salinity (4+ 4 19 2,10
o 11,18
S | days)
Increase in tidal 18, 28 23 20
range
Temporary drop
in salinity for a
few tide cycles

As far as the variable change of predicted salifsR$is concerned, the results of linear
regression analysis from the two sampling statamesquite different from each other.
For ACEBB, the model suggests that small total ipition and large mean and mean
absolute deviation of landward wind results lead targe drop in salinity. For ACEMC,
the model predicts that short rainfall duratiomgéatotal precipitation, small mean
absolute deviation of precipitation and large mabsolute deviation of landward wind
during rainfall period should cause a large dropalinity. Though the variable PTOT
appears in both models, it relates to the changalofity in two different ways.

The results of regression analysis using the dep@ndiriableds; are also different
between the two stations. For ACEBB, the model sstgthat larger mean absolute
deviation of precipitation results in greater imna¢e drop of linear trend slope. For
ACEMC, the model predicts that short rainfall dioat small mean absolute deviation of
precipitation and large mean absolute deviatiolemd-shore wind during rainfall period
should cause a greater immediate drop of slopeudinthe variable PMAD appears in
both models, it affects the dependent varidifein opposite directions.

Finally, the third dependent variall1S also has different results between the two
stations. There is no common factor in the finatlels chosen. For ACEBB, no
independent variables are significant at the Ou&llerhe significantly negative intercept
suggests a drop in average salinity after the aliinfFor ACEMC, the model suggests
that small precipitation and a large mean absalategation of inland wind component
tends to bring a greater drop in average salimitych will typically be present given the
large and negative intercept.
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4. Storm tracks and impacted water quality at NESRRVIP sites.

Fourteen named storms have been graphically dépict@ movie format which allows
simultaneous viewing of key meteorological datéoasing variables and selected
responding water quality parameters. Deploymergust 26-September, 2004 was
coincident with Hurricane Gaston. The storm wathwi200 miles of ACE Basin St.
Pierre site from August 24-September 3, 2004. Hache of the movie displayed one
day in the time course of the hurricane event (fedi6). At the top of the frame is the
classification of the storm from TD tropical deies, TS tropical storm, H1 class X
hurricane, distance from the site to the eye oftbem, and wind direction. The
meteorological variables included in the graphi @fif-shore winds, long-shore winds
and rainfall. The water quality variables depidiede been through the Phase |
periodicity removal and demonstrate divergence fbaseline values.

Figure 16. Hurricane Gaston in the ACE Basin StePierre Creek. (August 28, 2004)
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Depth ™

Discussion

Removing periodicity

We have investigated the use of classical harm@gjession models and nonparametric
harmonic regression models (generalized additivdais) for estuarine water quality
data. We explored the performance of these magkihg) real time series from the
National Estuarine Research Reserve System.
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For the NERRS data, classical harmonic regressicdmiques work well for the analysis
of depth data; however, they are not as satisfadtoranalysis of other, less regular,
water quality variables. The GAMs show great pbo&tfor these applications. The
cubic and cyclic regression splines are competitiith one another in terms of fit.
However, in practice, the cubic regression splifterohad an “edge effect” problem with
the NERRS data, whereas the cyclic regressionespli@sulted in smoothly periodic
functions. The GAMs are also more automaticallgsive and require less user-
intervention than the harmonic regression modéfien using harmonic regression, the
user must determine the number of harmonics fdn padodic term. For the NERRS
data, this decision would need to be made for gaghble of each deployment in phase |
analysis. For the data in the CICEET NERRS projbes would result in nearly 12,000
phase | decisions. In phase Il analysis, thissi@tiwould again need to be made for
each variable at each site. Using GAMs to modelddita is much more automated.

We believe that generalized additive models arerg promising method for modeling
estuarine water quality data, and more generallyafy time series with strong and
potentially non-sinusoidal signals of known peridthe ease of their use in R also makes
them very appealing. Not only are they adaptive @ser-friendly, but they are also non-
prohibitive in terms of computation time; for exadeyphase | analyses for 150
deployments of depth data take approximately 3riutes to complete on an Intel®
Pentium® M 1.60 GHz processor.

Event Detection

We have adapted Efron’s local false discovery ma¢hods for detecting events in
estuarine water quality data. We used a sum dreguresiduals test statistig, as

well as a more nonparametric test statidfic,which is the minimum absolute error for a
sequence of residuals. We developed a data-devent detection algorithm that uses
both test statistics in calculating local falsecdigery rates. We used the event detection
algorithm to detect events in the water qualityadaillected at the ACE Basin NERRS
reserve.

For the deployments from the ACE Basin reservehictvthe locfdr function did not

fail, results seem to be quite varied, even usiagrg low false discovery rate threshold
r=0.0001. In some cases, tl@* andV* test statistics detected similar events that were
believable. There were cases in which the twostisistics detected completely different
events. In other cases, too many events weretddtéar the results to be believable.
The reasons for these shortcomings when using BERRE data are unclear.

Future Research

If extreme events or mid-length and long eventsioflerate intensity are present in a

time series, this could influence the ability of tBAM to estimate the periodic
components. Thus, two passes of the GAM and elegattion algorithm could be
employed. In the first pass, the most extremeddvibus events are removed from the
dataset. In the second pass, the observations/énatnot detected as events are modeled
with the GAM. This second pass should more acely@stimate the periodic
components. The resulting residuals can then blyzed using the event detection
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algorithm. Once events are detected in a timesecauses for the events should be
explored. Water quality events can be compardahdovn meteorological events, such
as rainfall events, droughts, and El Niflo/La Nifimatic cycle effects. Numerical,
objective detection of events is just the firspste

Utilization

This project was a development of future modeleahhiques and could not be readily
transferred to managers at the current stage (s fapplication section for plan for
technology transfer).

Intellectual Property and Partnerships

The partnership between the University of Southo@a statistical professors and
graduate students enhanced the quality of the sisalfContinuing this collaborative
effort will yield ecological relevant informatiomd modeling products useful to NERRs
managers.

Knowledge Exchange

Presentations:

Joint Statistical Meeting. Seattle, August 2006priNarametric Harmonic Regression for
Estuarine Water Quality Data", Melanie Autin. S$heeived the 2006 ASA Section on
Statistics and the Environment (ENVR) JSM Presentaward.

Manuscripts:
Autin, Melanie and Don Edwards. (submitted). Nargmetric Harmonic Regression for
Estuarine Water Quality Data.

Graduate students supported by this project:
Melanie Autin, PhD, Statistics Department, USC NaQp7
Ross Li, MS, Statistics Department, USC. May 2007

Additional materials:
Hurricane CD: contains all water quality variatieovies” from southeastern NERRs
sites during named storms.

Application

The statistical analyses summarized in this repod, detailed with the USC statistical
thesis and dissertations (Li, 2007, Autin 2007)lddae conducted on additional NERRs
data to remove periodicity and detect events withair reserves. All the software
needed, models are included in the appendix oftilndents’ thesis and dissertation.

Managers and scientist utilizing reserve databagekl use new statistical tools to
further investigate the impact of short and longiteatural perturbations and
anthopogenic impacts. This statistical analystuise advanced, however, and even
with the work the students did to outline and stié@e the procedure, requires analytical
skills and lengthy computer time. These obstaobesd be overcome if statisticians were
integrated into the NERRs database managememtifideg universities who would
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collaborate with NERRs managers to facilitate iste@ modeling efforts would
encourage more utilization and investigation oféRkisting NERRs databases. One
example of effective university/reserve collabaratis the existing relationship of the
Statistical department at the University of Sou#lrdlina with ACE Basin, Sapelo Island,
and North Inlet/Winyah Bay reserves.
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