Connecticut River Project Report

For Contract

14030089

March 25, 2005
Updated May 16, 2005

Spectrum Contact:
Jennifer Whitacre, Project Manager
1560 Broadway, Suite 2000, Denver, CO 80202
303-298-9847 ext. 315-office jwhitacre@specmap.com
www.spectrummapping.com

ENSR Contact:
Matt Kennedy, ENSR Corporation
2 Technology Park Drive, Westford, MA 01886
978-589-3000-office mkenndey@ensr.com
Table of Contents

PROJECT APPROACH
- General Project Information
- Project Area
- Acquisition Systems
- Data Acquisition
- Ground Survey
- GPS/IMU Processing
- Raw Laser Data Processing
- Image Processing
- Bare Earth Filtering
- QC Assurance

DATA PROCESSING PROCEDURES
- Data Processing Methods
- Editing Methods
- Image Processing Procedures
- Breakline and Contour generation
- Data Deliverables
- Data Format
- QC Procedures

PROJECT SUMMARY
- LIDAR & Imagery Summary

LIDAR SYSTEM DATA REPORT
- LIDAR System Acquisition Parameters
- Accuracy of the Topographic Surface Products
- Tile Index
- Planned/Actual flight lines

FLIGHT REPORT
- GPS Control
- Calibration Ground Truth

GROUND CONTROL REPORT
- Base Station Information
- Checkpoint Survey

SYSTEM CALIBRATION REPORT
- System Calibration Summary
- GPS/Calibration Process Summary
- Process Summaries for all flight days
- Calibration Accuracy

Appendix A – RMSE Calculations
Appendix B – Survey Report
PROJECT APPROACH
Project Name and Location
Connecticut River, CT, MA

Dates of Data Acquisition
Connecticut Project Area
May 8, 2004
May 11, 2004
May 12, 2004
May 15, 2004
May 20, 2004
June 4, 2004
June 7, 2004
June 8, 2004
June 16, 2004

Massachusetts Project Area
May 13, 2004
May 14, 2004
June 4, 2004
June 7, 2004
June 8, 2004
June 9, 2004
June 11, 2004
June 12, 2004
June 23, 2004
June 30, 2004
July 1, 2004
July 3, 2004

Dates of Data Processing
June, 2004 through September, 2004 – CT
September through October, 2004 – MA
October 2004 through March 2005 – CT and MA contour generation

General
Spectrum Mapping was tasked by ENSR International to collect LIDAR data and digital ortho imagery to generate breaklines and bare earth DEM to support 2-foot contour intervals in accordance with FEMA Appendix A. The project area for Connecticut River floodplain was approximately 267 square miles. 143 square miles in Massachusetts, which includes Hampden County, and 124 square miles in Connecticut, which includes Middlesex, Hartford and New London Counties. The Spectrum aircraft was equipped with the RAMS system, including a 26 Khz Laser, an inertial measurement unit (IMU), and a dual frequency GPS receiver and antenna. The RAMS sensor system also includes a RAMS 4K X 4K color digital camera mounted to the LiDAR unit.
Project Area
Spectrum ensures that the geographic extent of the project area is collected using the correct mission profiles for the desired products. This is accomplished using TRACK'Air, a digital mission-planning tool.

Mission planning consists of several steps that ensure proper flight preparation. First and foremost the project boundary for the site is acquired from our customer and imported into our flight planning software. Following this, available information such as elevation data, vegetation coverage and cultural feature extents are reviewed and general assessments are made by our Photogrammetrists to determine proper LIDAR system settings, such as FOV (field of view) and GSD (ground sample distance). All LIDAR and image flight lines are flown with a minimum of 30% side overlap. Having set the previous parameters, the flight plan is prepared in digital form using our proprietary software. The existing elevation data is then imported and queried to calculate the flight altitudes for each flight line. Once flight planning is complete, waypoints in latitude/longitude and ellipsoid height are output to our flight management system.

GPS differential correction is required for our process. GPS planning software is used to predict PDOP (positional dilution of precision … i.e. GPS quality) greater than 3.0. Should this condition occur, laser data acquisition is suspended until the satellite geometry improves. Spectrum's base stations are full wave, dual frequency, GPS receivers that record data at a rate of 1 second. All base station data is recorded to 1GB flash memory cards for immediate use after the mission.

Acquisition Systems
Spectrum Mapping employs a medium-format digital camera to capture color imagery concurrently with the laser data. This imagery was used in a stereo and ortho mono editing environment to control the quality of the terrain model generated by the RAMS™ LIDAR system, and to generate breaklines to conform to hydrologic modeling requirements. Use of the integrated LIDAR/Camera system provides a direct path to mapping output products, as the imagery is controlled using the same Airborne GPS/Inertial Measurement system used for the LIDAR sensor. Flight data was logged digitally to a 150Gb removable hard drive array on board the aircraft. GPS base station data was logged to flash memory cards. This allowed for rapid file transfer since tape systems have been eliminated from the process. Drives were downloaded daily, processed, and archived immediately following collection, yielding basic laser and image data within hours of data collection. Field checks of the data were performed each day to ensure complete coverage of the area flown that day for both laser and imagery data.

Data Acquisition
Our flight crew, comprised of a pilot and a system operator, mobilized to the project site ferrying all equipment and digital information required. Recovery of GPS base stations and coordination with the project ground control team were completed to identify correct base station and calibration site information.
A calibration site was established before the project commenced. Before each mission, the pilot will acquire data over this location. This calibration site consisted of a small area with existing control placed by GPS methods. Points are typically photo identifiable so they can be located in the digital imagery as well.

The flight crew was guided by a GPS controlled flight management system, which displays the flight plan; including altitude, heading, cross track deviation and PDOP. The system operator monitors flight management data in addition to laser information, and a real-time view of the digital imagery. During flight the crew monitors all functions in system operation and guidance ensuring a successful mission.

Ground Survey
Spectrum utilized airborne GPS methods for the production of this project. ENSR International provided survey control support as required and horizontal and vertical checkpoint surveys as needed for quality control.

GPS/IMU Processing
Position and orientation data must be processed first in order to resolve laser data, rectify imagery data, and verify flight coverage. All aircraft trajectory and exterior orientation parameters for imagery are generated during this process. Both horizontal and vertical project coordinate computations are accomplished at this stage. This processing takes approximately two times the actual flight time of the mission.

Raw Laser Data Processing
Laser data is then processed to resolve the range finder, scan angle, and position and orientation system data, using Spectrum's post-processor software. All returns are sorted to best reflect the vegetated and bare earth surfaces. Data are transformed from raw binary format to an LAS file format for filtering and custom projection. The most current NGS models are an integral part of the post-processing software, with custom projection options available.

Laser data are thinned for quick projection of swath coverage. Image footprints are then superimposed to assess all aspects of data collection. Spectrum's LIDIMAGE™ software is also used at this stage for a rudimentary test of the data validity. LIDIMAGE™ is a fast-generating bitmap utility for rapid viewing of the DEM data. Any seams, holes, or other unwanted artifacts could be quickly identified for potential re-flight areas.

Image Processing
Imagery is processed from its proprietary storage format to a raw binary format and then automatically radiometrically balanced for contrast. During this stage, image header information will be generated containing exposure number, position (x/y/z), and orientation (omega/phi/kappa). A header format will be generated to support batch processing of all frames, which automatically prepares the files for quality assurance testing and 3-D (stereo) editing. Spectrum utilizes Z/I Imaging’s ORTHOPRO products for automated tone balancing and orthorectification.
Bare Earth Data Filtering
The LIDAR system collects elevation and position information from all reflective surfaces. The task is to identify and remove those features that do not describe the bare earth.
Spectrum houses all laser points in a database LAS (format) that retains information about flight day and time, return number, laser scan angle, and other proprietary information. This data is displayed and manipulated using our proprietary tools and software. The database is reviewed and areas of like characteristics are delineated and flagged. A laser processing group, will determine which type of filtering technique(s) need to be applied to each type of area, to best portray a bare earth surface. Factors that affect this decision are slope, vegetation and cultural features. Each project has unique characteristics that can only be assessed after the data is collected. The data is flagged in the LAS format and as part of the QC process with the imagery, reviewed to ensure correct surface depiction.

Data voids may occur from several different causes, including the following:

Natural
- LIDAR pulses may be naturally absorbed by water bodies or areas recently covered with asphalt. Such voids are normally considered to be unavoidable.

Operational
- The LIDAR system may have malfunctioned for some reason.
- Heavy winds, flight navigation system (FNS) error or pilot error may have caused "holidays" between flight lines.

Procedural
- Data points may be un-intentionally removed as part of the bare-earth post-processing to delete points that impinged on the tops of manmade structures or failed to penetrate dense vegetation.

Data voids caused by removal of LIDAR data points on manmade structures are acceptable.

As part of the field QC process, data voids caused operational constraints are re-collected if required. No data voids were identified in this project.

Artifacts are regions of anomalous elevations or oscillations and ripples within the DEM data resulting from systematic errors, environmental conditions, or incomplete post-processing. Spectrum utilizing both the imagery and software tools ensures that artifacts are properly modeled (removed or edited with breaklines) so that they do not influence the resulting surface.

Quality Assurance
A rigorous quality assurance program insures that the final data products meet all requirements prior to delivery to the customer. Quality Assurance / Quality Control is embedded into the overall data acquisition and processing steps we use. Quality assurance is inherent in developing the project plan, acquisition, verifying data and processing, and assuring that the final products meet all FEMA requirements in accordance with the contract. Spectrum Mapping’s quality assurance procedures follow the “FEMA Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix A: Guidance for Aerial Mapping and Surveying” for use of LIDAR mapping technology.
DATA PROCESSING PROCEDURES
Data Processing Procedures

Data was delivered to Spectrum Mapping’s Albuquerque office from the field on external hard drives. The data is cataloged and copied onto the processing computer disk drives. The data is then re-verified for coverage and quality. The data is then ready for calibration. Once the data is calibrated it is sent to the Denver office on external hard drives for post processing. The first step in the LIDAR data processing is to produce the x, y, and z laser returns using Spectrum’s proprietary LIDAR data processing software. The next step in the laser data processing is to combine the flight lines in a merge process that eliminates any redundant points. In this step the data is also cropped into more manageable units that correspond to customer’s specified data file boundaries or file size limitations. Noise or anomalous returns are usually filtered from all data during this processing step.

In order to produce the bare earth DEM’s, vegetation removal is performed on the last return elevation point data by identifying the laser returns from above ground vegetation. This proprietary algorithm is capable of removing between 90-95% of the trees and most other prominent above ground vegetation from the data.

The next step in the post-processing of the DEM data is to perform the ellipsoid to orthometric height conversion using the National Geodetic Survey (NGS) Geoid Model, GEOID99. All elevation data was processed in this way on a point-by-point basis. The data is then brought into ArcGIS 8.2 and converted into a hillshade. This allows for better quality control. If additional editing is required, the tile with artifacts will go back to the manual vegetation removal step.

The final step was to assemble the bare earth DEM into the correct customer specified delivery format. The coordinate system is State Plane, Mass inland and CT. Horizontal reference is NAD83. Vertical control reference datum is NAVD88. Units of measurement are in US Survey Feet. All the variably-spaced x, y, z DEM points data were converted to ASCII comma delimited point files.
Editing Methodologies

Step 1: The raw data set is converted into gray shade tiff images and imported into Arcmap. The editor will then review the entire project area and determine a 1k x 1k tile (or a group of 1k x 1k tiles) that is representative of the extreme topographies in the project area. These areas should be based on features that are susceptible to filter erosion. (i.e. mountain ridgelines or peaks, roads or rail beds, levees/dikes, mine pits, canyon ledges) and any other abrupt changes in land topography.

Step 2: The editor will use this tile (or set of tiles) as a test area to determine the proper settings for the vegetation filter iterations. These settings should remove the maximum amount of vegetation spikes without degrading the above mentioned land features. The editor will implement the ‘Plainer Fit’ filter for all vegetation removal. This filter creates an average ‘ground surface’ based on the lower points (presumed to be ground) of an area and removes the points above this surface.

Step 3: Once the editor has determined the optimal settings for the test area, the settings will be implemented on the entire data set. Gray shade tiffs are then created and imported into the Arcmap project. Using a 1.5k x 1.5k viewing window, the editor will view the two image sets; edited and unedited, to see if any land features have been inadvertently removed. While the editor is reviewing their edits they will also create polygons that define areas in which further vegetation removal is required.

Step 4: After the polygons have been drawn around the remaining vegetation, the editor will only implement edits within those polygon boundaries. This allows for more aggressive inputs in the plainer fit filter because all of the edits are targeted on specific areas of vegetation. A final set of gray shades is created for final review. The processor will flag specific areas that require manual edits.

Step 5: Manual edits. The manual editor will use the actual points and imagery data to remove any remaining vegetation or artifacts. This is done by using Spectrum Mapping’s LIDMASS software. The software allows the technician to view the data in 2D as well as 3D. The imagery collected during the acquisition is used as a QC tool to help correctly identify vegetation or other artifacts.
Image Orthorectification Processing Procedures

Spectrum performs a differential rectification on a pixel-by-pixel basis to remove image displacement due to topographic relief and aircraft attitude. Bilinear resampling techniques will be used during image orthorectification.

Position and orientation data from the AGPS and IMU must be processed first in order to verify flight coverage, resolve LIDAR data (used for accurate surface representation), and rectify imagery data. All aircraft trajectory and exterior orientation parameters for imagery are generated during this process.

Zeiss-Intergraph software is used throughout the process to ensure consistent results, and the exclusive use of a native digital image eliminates film scanning and the attendant image degradations that can occur when working with film media. The resulting products, generated from highly automated software applications processes, are individual ortho-photographically correct images, ready for the next step in the process.

The orthos are then mosaicked and color balanced together removing the frame-to-frame seam lines. This process creates a uniform radiometric appearance across the complete project area, eliminating inconsistencies in tone and density between individual orthophotos.

Breakline and Contour Generation

Breaklines are defined as linear features that describe a change in the slope, smoothness or continuity of surface. Breaklines are added to enforce the topology for the generation of contours from digital elevation models. Utilizing breaklines will enforce the hydrology in the generation of contour maps.

Spectrum utilized a combination of 2D data compilation and 3D stereo compilation for the generation of topographic breaklines. The 2D data compilation, from the digital camera ortho image data, combined with the bare earth LIDAR DEM data, produces an accurate planimetric representation of streams, rivers, and impediments to water flow. The 2D data is attributed from the interpolated bare earth LIDAR DEM surface with the associated elevation creating a “2 1/2 D” vector data set in a cost effective manner. Since Spectrum acquires aerial digital image mapping data concurrently with the LIDAR data acquisition, the spatial accuracy of both data sets is the same; as both utilize the same airborne GPS and IMU solution for positional determination. This process removes any potential errors in differing spatial and temporal accuracies of the topographic and image data sets and allows for a more accurate depiction of the surface topology.

Stereo compilation is used to supplement the LIDAR surface model in areas where laser returns may have been reduced due to water bodies (i.e. swamps/ marshland) and to spot check both the topographic breakline and bare earth DEM surface data.
This dual track approach ensures breakline map data accuracy by using the traditional stereo visual quality control combined with the cost-effective generation and editing of 2D ortho image derived breaklines.

The resultant combination of LIDAR DEM and breakline data known as Digital Terrain Model (DTM) data will represent the bare earth surface and meet FEMA and National Map Accuracy Standards (NMAS) for the 2-foot contour accuracy specifications. All DTM, contour data is GIS ready; meaning all polygons will be closed; all lines are continuous with no overshots, undershoots or breaks. Intersection polygons are clearly defined and lines and polygons are not broken at map grid boundaries in the data.

All contours are generated from the bare earth DEM and breakline data using TerraModel software.

Deliverable DEM Data Format

Data Deliverables:
Ground Surface DEM
Breaklines
2-foot Contours
1ft GSD color ortho imagery

Data Format:
Ground Surface DEM, Variably spaced, comma delimited ASCII point files
2 ft contours, ESRI Shape files
Digital Imagery, Geo-tiff with tiff world files
Breaklines, edge of water and drainage features, ESRI Shape files

Map Coordinate System and Datum:

GEOID Used:
Geoid 99
Quality Control Procedures

Spectrum has many control procedures in place to provide quality assurance through each step of data processing.

Step 1 - Spectrum verifies project boundaries and data deliverables with customer prior to flight

Step 2 - QA of data after collection to verify complete coverage, data then goes to calibration

Step 3 - QA of data after calibration to verify solution before data processing

Step 4 - QA/QC of automated vegetation filter iterations; data may go through many different iterations of automated filters, data then goes to manual editing.

Step 5 - QA/QC of manual edits by using imagery as background to help identify surface features.

Step 6 - QA/QC of final deliverables. All rectified image data are projected to the contoured surface and reviewed for registration, DTM surface error, contour quality, contour edge matching, image sheer, mosaic seam and radiometric quality, and other data artifacts. All LIDAR DEM data are converted into hillshades and reviewed for artifact removal, proper datum and coordinate systems, data voids or anomalies, and edge matching.

Step 7 - Delivery media are verified and checked for completeness before delivery.
Project Summary

Spectrum Mapping collected approximately 243 square miles of data for Connecticut River floodplain project area. This data was collected between May 8, 2004 and July 3, 2004. The main problems during collection were due to the inclimate weather. The imagery cannot be collected when clouds obscure the surface. There were no problems encountered during the post processing of this project except schedule. This area had far more vegetation than anticipated which in turn took longer to manually edit the tiles.

The contours and breaklines also took much longer than anticipated. Breaklines were drawn using the imagery and lidar for reference. The elevation was added to the breaklines using the lidar bare earth DEM. The 2-foot contours were then generated off of the collected breaklines and the bare earth DEM surface.

The data meets contract specifications for 2-foot contours of 0.50ft (15 cm). The combined DEM accuracy for CT and MA project areas was .483 feet RMSE. The DEM RMSE included a total of 48 control points.
LIDAR SYSTEM DATA REPORT
General System Acquisition Parameters

RAMS™ Digital Camera

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera Array</td>
<td>4k X 4k pixel panchromatic, color.</td>
</tr>
<tr>
<td>Recording Rate Per Frame</td>
<td>less than 2.2 seconds</td>
</tr>
<tr>
<td>Camera FOV 50mm Lens</td>
<td>45 degrees fixed</td>
</tr>
<tr>
<td>50 mm Lens Calibration</td>
<td>less than 1 pixel RMSE full FOV</td>
</tr>
<tr>
<td>Camera FOV 90mm Lens</td>
<td>30 degrees fixed</td>
</tr>
<tr>
<td>90 mm Lens Calibration</td>
<td>less than 0.5 RMSE full FOV</td>
</tr>
<tr>
<td>Minimum Ground Projected Pixel Footprint</td>
<td>6 inches</td>
</tr>
<tr>
<td>Maximum Ground Projected Pixel Footprint</td>
<td>Unlimited (AGL dependent)</td>
</tr>
<tr>
<td>Image Geopositioning Accuracy</td>
<td>better than 1 foot RMSE absolute</td>
</tr>
</tbody>
</table>

RAMS™ System Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser</td>
<td></td>
</tr>
<tr>
<td>Laser Altitude</td>
<td>10,000 feet AGL Max</td>
</tr>
<tr>
<td>Laser Swath Width</td>
<td>7,250 feet Max</td>
</tr>
<tr>
<td>Laser Scan FOV</td>
<td>45 Degrees Max</td>
</tr>
<tr>
<td>Scan Rate</td>
<td>0-35 Hz (FOV dependent)</td>
</tr>
<tr>
<td>Laser Pulse Rate</td>
<td>100Hz-15kHz Max</td>
</tr>
<tr>
<td>Laser Returns</td>
<td>5 at 15kHz</td>
</tr>
<tr>
<td>Cross Track Spacing</td>
<td>0-25 feet</td>
</tr>
<tr>
<td>Along Track Spacing</td>
<td>3 feet minimum (Airspeed dependent)</td>
</tr>
<tr>
<td>Nominal X/Y Ground Sample Distance</td>
<td>10 feet</td>
</tr>
<tr>
<td>X, Y, Z Positional Accuracy</td>
<td>less than 1 foot RMSE absolute</td>
</tr>
</tbody>
</table>
Accuracy of the Topographic Surface Products

Green International Affiliates, Inc collected the 48 control points used below for the RMSE of the project areas. The RMSE below is combined for the Massachusetts and Connecticut project areas. The final RMSE is .483 feet vertical. This exceeds the FEMA Guidelines and Specifications for Flood Hazard Mapping.

This data meets the contract accuracy requirements of 15 cm (0.50 ft) (FEMA 2 ft contours) for the project. This data also meets FEMA’s requirement of 18.5 cm (0.61 ft) for data supporting 2-foot contours. FEMA Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix A, Section A.3.2 Vertical Accuracy Criteria.

1. To produce the RMSE, a TIN (triangular irregular network) was produced from the bare earth ASCII points.
2. Elevation differences were calculated between the TIN elevations and the independent control points provided.
3. The elevation differences are squared and the sum is averaged.
4. The RMSE is calculated by taking the square root of the Average minus the Error ^2 result.

Please refer to Appendix A for all of the RMSE calculations.

<table>
<thead>
<tr>
<th>Control Point</th>
<th>Northing</th>
<th>Easting</th>
<th>Elevation ft</th>
<th>Lidar Elevation ft</th>
<th>Difference ft</th>
<th>Squared</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212</td>
<td>2889844.27</td>
<td>349444.34</td>
<td>90.04</td>
<td>89.14</td>
<td>-0.9008</td>
<td>0.8114</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>2907506.19</td>
<td>355940.69</td>
<td>131.80</td>
<td>130.91</td>
<td>-0.8929</td>
<td>0.7973</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>2907590.20</td>
<td>355930.00</td>
<td>129.29</td>
<td>128.43</td>
<td>-0.8645</td>
<td>0.7474</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>2907399.76</td>
<td>355919.23</td>
<td>129.97</td>
<td>129.32</td>
<td>-0.6488</td>
<td>0.4209</td>
<td></td>
</tr>
<tr>
<td>991203</td>
<td>843031.36</td>
<td>1022706.71</td>
<td>14.35</td>
<td>13.74</td>
<td>-0.6100</td>
<td>0.3719</td>
<td></td>
</tr>
<tr>
<td>991303</td>
<td>823283.70</td>
<td>1024837.70</td>
<td>32.60</td>
<td>31.99</td>
<td>-0.6070</td>
<td>0.3678</td>
<td></td>
</tr>
<tr>
<td>991001</td>
<td>890331.19</td>
<td>1032210.70</td>
<td>41.21</td>
<td>40.66</td>
<td>-0.5490</td>
<td>0.3018</td>
<td></td>
</tr>
<tr>
<td>991101</td>
<td>858662.19</td>
<td>1026428.27</td>
<td>80.27</td>
<td>79.73</td>
<td>-0.5430</td>
<td>0.2947</td>
<td></td>
</tr>
<tr>
<td>991301</td>
<td>823144.23</td>
<td>1025288.57</td>
<td>37.42</td>
<td>36.88</td>
<td>-0.5400</td>
<td>0.2918</td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>2922735.26</td>
<td>358207.05</td>
<td>114.22</td>
<td>113.69</td>
<td>-0.5334</td>
<td>0.2845</td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td>2889796.90</td>
<td>349778.18</td>
<td>61.78</td>
<td>61.29</td>
<td>-0.4950</td>
<td>0.2450</td>
<td></td>
</tr>
<tr>
<td>1410</td>
<td>2878485.47</td>
<td>352622.68</td>
<td>63.58</td>
<td>63.14</td>
<td>-0.4424</td>
<td>0.1957</td>
<td></td>
</tr>
<tr>
<td>1411</td>
<td>2878454.67</td>
<td>352383.68</td>
<td>61.32</td>
<td>60.89</td>
<td>-0.4340</td>
<td>0.1884</td>
<td></td>
</tr>
<tr>
<td>991703</td>
<td>723794.94</td>
<td>1077845.41</td>
<td>6.83</td>
<td>6.44</td>
<td>-0.3920</td>
<td>0.1539</td>
<td></td>
</tr>
<tr>
<td>992001</td>
<td>679192.91</td>
<td>1102663.78</td>
<td>49.74</td>
<td>49.37</td>
<td>-0.3690</td>
<td>0.1361</td>
<td></td>
</tr>
<tr>
<td>1510</td>
<td>2873667.35</td>
<td>351690.62</td>
<td>58.44</td>
<td>58.08</td>
<td>-0.3606</td>
<td>0.1300</td>
<td></td>
</tr>
<tr>
<td>991503</td>
<td>780267.51</td>
<td>1037143.02</td>
<td>11.09</td>
<td>10.76</td>
<td>-0.3340</td>
<td>0.1118</td>
<td></td>
</tr>
<tr>
<td>991002</td>
<td>890213.50</td>
<td>1032336.72</td>
<td>34.72</td>
<td>34.39</td>
<td>-0.3270</td>
<td>0.1066</td>
<td></td>
</tr>
<tr>
<td>1901</td>
<td>2860347.34</td>
<td>360056.54</td>
<td>56.17</td>
<td>55.90</td>
<td>-0.2711</td>
<td>0.0735</td>
<td></td>
</tr>
<tr>
<td>2312</td>
<td>2843143.68</td>
<td>353849.26</td>
<td>54.61</td>
<td>54.35</td>
<td>-0.2594</td>
<td>0.0673</td>
<td></td>
</tr>
<tr>
<td>1910</td>
<td>2860559.98</td>
<td>360111.33</td>
<td>47.56</td>
<td>47.32</td>
<td>-0.2394</td>
<td>0.0573</td>
<td></td>
</tr>
<tr>
<td>991801</td>
<td>724741.86</td>
<td>1077808.18</td>
<td>7.45</td>
<td>7.25</td>
<td>-0.2010</td>
<td>0.0406</td>
<td></td>
</tr>
<tr>
<td>991102</td>
<td>858590.04</td>
<td>1026254.50</td>
<td>91.28</td>
<td>91.09</td>
<td>-0.1940</td>
<td>0.0375</td>
<td></td>
</tr>
<tr>
<td>991701</td>
<td>724406.02</td>
<td>1077884.17</td>
<td>6.62</td>
<td>6.44</td>
<td>-0.1850</td>
<td>0.0342</td>
<td></td>
</tr>
<tr>
<td>Control Point</td>
<td>Northing</td>
<td>Easting</td>
<td>Elevation ft</td>
<td>Lidar Elevation ft</td>
<td>Difference ft</td>
<td>Squared</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>991901</td>
<td>705016.67</td>
<td>1088699.31</td>
<td>6.87</td>
<td>6.69</td>
<td>-0.183</td>
<td>0.0335</td>
<td></td>
</tr>
<tr>
<td>991902</td>
<td>705068.86</td>
<td>1087633.19</td>
<td>8.20</td>
<td>8.03</td>
<td>-0.170</td>
<td>0.0288</td>
<td></td>
</tr>
<tr>
<td>991501</td>
<td>780391.10</td>
<td>1037799.46</td>
<td>9.55</td>
<td>9.42</td>
<td>-0.134</td>
<td>0.0180</td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>2922545.56</td>
<td>357718.01</td>
<td>114.56</td>
<td>114.43</td>
<td>-0.1329</td>
<td>0.0177</td>
<td></td>
</tr>
<tr>
<td>991201</td>
<td>843260.16</td>
<td>1022612.29</td>
<td>13.84</td>
<td>13.75</td>
<td>-0.087</td>
<td>0.0076</td>
<td></td>
</tr>
<tr>
<td>1911</td>
<td>2860375.75</td>
<td>359979.18</td>
<td>55.17</td>
<td>55.09</td>
<td>-0.0800</td>
<td>0.0064</td>
<td></td>
</tr>
<tr>
<td>991202</td>
<td>843674.95</td>
<td>1022801.07</td>
<td>14.17</td>
<td>14.14</td>
<td>-0.029</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td>991708</td>
<td>762773.11</td>
<td>1045930.72</td>
<td>47.83</td>
<td>47.86</td>
<td>0.028</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td>1513</td>
<td>2874682.92</td>
<td>352244.35</td>
<td>57.30</td>
<td>57.34</td>
<td>0.0353</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>991003</td>
<td>890024.69</td>
<td>1032365.69</td>
<td>31.96</td>
<td>32.02</td>
<td>0.061</td>
<td>0.0037</td>
<td></td>
</tr>
<tr>
<td>991302</td>
<td>823178.80</td>
<td>1025130.46</td>
<td>33.90</td>
<td>34.04</td>
<td>0.137</td>
<td>0.0189</td>
<td></td>
</tr>
<tr>
<td>2310</td>
<td>2843124.11</td>
<td>354245.87</td>
<td>52.05</td>
<td>52.21</td>
<td>0.1639</td>
<td>0.0269</td>
<td></td>
</tr>
<tr>
<td>992002</td>
<td>679126.06</td>
<td>1102733.37</td>
<td>50.04</td>
<td>50.27</td>
<td>0.226</td>
<td>0.0513</td>
<td></td>
</tr>
<tr>
<td>991803</td>
<td>724913.67</td>
<td>1078037.37</td>
<td>6.62</td>
<td>6.88</td>
<td>0.258</td>
<td>0.0664</td>
<td></td>
</tr>
<tr>
<td>991103</td>
<td>858472.69</td>
<td>1026281.67</td>
<td>84.87</td>
<td>83.48</td>
<td>-1.390</td>
<td>1.9324</td>
<td>Point is in trees</td>
</tr>
<tr>
<td>148</td>
<td>2922733.15</td>
<td>357979.29</td>
<td>106.93</td>
<td>107.96</td>
<td>1.0253</td>
<td>1.0512</td>
<td>Point on grassy surface/possible survey</td>
</tr>
<tr>
<td>991709</td>
<td>762800.68</td>
<td>1045802.84</td>
<td>52.90</td>
<td>53.19</td>
<td>0.289</td>
<td>0.0836</td>
<td></td>
</tr>
<tr>
<td>991702</td>
<td>723976.37</td>
<td>1077964.00</td>
<td>6.82</td>
<td>7.12</td>
<td>0.303</td>
<td>0.0916</td>
<td></td>
</tr>
<tr>
<td>991502</td>
<td>780373.10</td>
<td>1037466.12</td>
<td>10.34</td>
<td>10.65</td>
<td>0.307</td>
<td>0.0943</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2922765.19</td>
<td>358220.92</td>
<td>111.90</td>
<td>112.23</td>
<td>0.3254</td>
<td>0.1059</td>
<td></td>
</tr>
<tr>
<td>1401</td>
<td>2878012.96</td>
<td>352935.05</td>
<td>59.23</td>
<td>59.63</td>
<td>0.3960</td>
<td>0.1568</td>
<td></td>
</tr>
<tr>
<td>991802</td>
<td>724459.56</td>
<td>1078091.47</td>
<td>6.82</td>
<td>7.22</td>
<td>0.397</td>
<td>0.1575</td>
<td></td>
</tr>
<tr>
<td>1211</td>
<td>2889870.91</td>
<td>349877.42</td>
<td>62.56</td>
<td>62.97</td>
<td>0.4108</td>
<td>0.1688</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>2907654.32</td>
<td>355896.98</td>
<td>123.57</td>
<td>124.46</td>
<td>0.8903</td>
<td>0.7926</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>-8.15</td>
<td></td>
<td>11.1838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. Error</td>
<td></td>
<td></td>
<td>-0.17</td>
<td></td>
<td>0.2330</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Points / RMSE</td>
<td>48.00</td>
<td></td>
<td></td>
<td></td>
<td>0.4827</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tile Index
Below shows the tiling index for both the Connecticut and Massachusetts portion of the project area
Planned Flight Lines

Connecticut Flight Plan
Actual Flight Lines

Legend
- Mar10_utm
- Mar14_utm
- June1b_utm
- June7_utm
- June8_utm
- June9_utm
- June11a_utm
- June11b_utm
- June12a_utm
- June12b_utm
- June23_utm
- July13b_utm
- July18_utm
- July3a_utm
- July3b_utm
Connecticut Actual Flight Lines

Legend
- May6_utm
- May11_utm
- May12_utm
- may15_utm
- may20a_utm
- May20b_utm
- JUNE4_UTM
- June7_utm
- June8_utm
- june16_utm
FLIGHT REPORT
GPS Control

AC7670 SACS - This is a Secondary Airport Control Station.
AC7670 DESIGNATION - BDL B
AC7670 PID - AC7670
AC7670 STATE/COUNTY - CT/HARTFORD
AC7670 USGS QUAD - WINDSOR LOCKS (1984)

CURRENT SURVEY CONTROL

AC7670* NAD 83(1996) - 41 57 00.32545(N) 072 40 16.36405(W) ADJUSTED
AC7670* NAVD 88 - 47.34 (meters) 155.3 (feet) GPS OBS

AC7670 X - 1,415,023.609 (meters) COMP
AC7670 Y - -4,535,090.999 (meters) COMP
AC7670 Z - 4,241,494.757 (meters) COMP
AC7670 LAPLACE CORR - -2.73 (seconds) DEFLEC99
AC7670 ELLIP HEIGHT - 18.30 (meters) (06/04/02) GPS OBS
AC7670 GEOID HEIGHT - -29.07 (meters) GEOID03

AC7670 HORZ ORDER - FIRST
AC7670 ELLP ORDER - FOURTH CLASS I

AC7670 This mark is at Bradley Intl Airport (BDL)
AC7670 The horizontal coordinates were established by GPS observations
AC7670 and adjusted by the National Geodetic Survey in May 2000.
AC7670 The orthometric height was determined by GPS observations and a
AC7670 high-resolution geoid model.
AC7670 GPS derived orthometric heights for airport stations designated as
AC7670 PACS or SACS are published to 2 decimal places. This maintains
AC7670 centimeter relative accuracy between the PACS and SACS. It does
AC7670 not indicate centimeter accuracy relative to other marks which are
AC7670 part of the NAVD 88 network.
AC7670 Photographs are available for this station.
AC7670 The X, Y, and Z were computed from the position and ellipsoidal ht.
AC7670 The Laplace correction was computed from DEFLEC99 derived deflections.
AC7670 The ellipsoidal height was determined by GPS observations
AC7670 and is referenced to NAD 83.
AC7670 The geoid height was determined by GEOID03.

AC7670; SPC CT - 276,432.228 311,333.395 MT 1.00000952 +0 03
AC7670; UTM 18 - 4,646,857.849 693,021.043 MT 1.00005847 +1 33

AC7670 Elev Factor x Scale Factor = Combined Factor
AC7670!SPC CT - 0.99999713 x 1.00000952 = 1.00000665
AC7670!UTM 18 - 0.99999713 x 1.00005847 = 1.00005560
AC7670

SUPERSEDED SURVEY CONTROL

AC7670

No superseded survey control is available for this station.

AC7670

AC7670_U.S. NATIONAL GRID SPATIAL ADDRESS: 18TXM9302146858(NAD 83)
AC7670_MARKER: DD = SURVEY DISK
AC7670_SETTING: 7 = SET IN TOP OF CONCRETE MONUMENT
AC7670_STAMPING: BDL B 1992
AC7670_MARK LOGO: NGS
AC7670_PROJECTION: FLUSH
AC7670_MAGNETIC: N = NO MAGNETIC MATERIAL
AC7670_STABILITY: C = MAY HOLD, BUT OF TYPE COMMONLY SUBJECT TO
AC7670+STABILITY: SURFACE MOTION
AC7670_SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR
AC7670+SATELLITE: SATELLITE OBSERVATIONS - September 25, 2000

AC7670

AC7670_HISTORY - Date Condition Report By
AC7670_HISTORY - 1992 MONUMENTED NGS
AC7670_HISTORY - 19991206 GOOD WOOLPT
AC7670_HISTORY - 20000925 GOOD NGS

AC7670

STATION DESCRIPTION

AC7670

AC7670*DESCRIBED BY NATIONAL GEODETIC SURVEY 1992 (GFS)
AC7670*THE STATION IS LOCATED AT THE BRADLEY INTERNATIONAL AIRPORT SOUTHEAST
AC7670*OF RUNWAY END 24. IT IS 95.3 FT (29.0 M) SOUTHEAST OF THE CENTERLINE
AC7670*OF THE TAXIWAY, 72.1 FT (22.0 M) NORTHEAST OF THE 6TH TAXIWAY LIGHT
AC7670*SOUTHWEST OF THE RUNWAY END, 45.5 FT (13.9 M) SOUTHEAST OF THE LINE
AC7670*EXTENDED OF THE HOLDBAR, 44.7 FT (13.6 M) SOUTHEAST OF THE 5TH TAXIWAY
AC7670*LIGHT FROM THE RUNWAY END, 26.8 FT (8.2 M) NORTHEAST OF A P-K NAIL AND
AC7670* WASHER SET IN THE SHOULDER OF THE TAXIWAY AND SOUTHEAST OF THE FAA
AC7670*ROAD TO THE APPROACH LIGHT LANE. THE STATION IS A STANDARD NOS DISK
AC7670* STAMPED BDL B 1992 SET IN THE TOP OF A 8-INCH CONCRETE POST WHICH IS
AC7670*FLUSH WITH THE GROUND.

AC7670

STATION RECOVERY (1999)

AC7670

AC7670*RECOVERY NOTE BY WOOLPERT CONSULTANTS 1999 (WLP)
AC7670*THE STATION IS LOCATED APPROXIMATELY 9.0 KM (5.60 MI) WEST-SOUTHWEST
AC7670*FROM EAST WINDSOR, 5.7 KM (3.55 MI) WEST-NORTHWEST OF WINDSOR LOCKS,
AC7670*4.6 KM (2.85 MI) NORTH OF POQUONOCK, AT THE BRADLEY INTERNATIONAL
AC7670*AIRPORT. OWNERSHIP-- BRADLEY INTERNATIONAL AIRPORT, C/O STEVE KORTA
AC7670*AIRPORT MANAGER, BRADLEY INTERNATIONAL AIRPORT TERMINAL B, WINDSOR
AC7670*THIS STATION REQUIRES 24 HOUR NOTICE TO AIRPORT CONTACT FOR ACCESS.
AC7670*TO REACH THE STATION FROM THE JUNCTION OF INTERSTATE 91 (EXIT 40) AND
AC7670*STATE ROUTE 20, PROCEED WESTERLY 2.8 MI (4.5 KM) ALONG STATE ROUTE 20
AC7670* TO THE JUNCTION OF THE BRADLEY FIELD CONNECTOR. CONTINUE STRAIGHT
AC7670*ONTO THE BRADLEY FIELD CONNECTOR AND PROCEED NORTHEASTERLY 1.2 MI (1.9
AC7670*KM) TO THE MERGING OF THE CONNECTOR AND STATE ROUTE 401. CONTINUE
AC7670*NORTHEASTERLY 0.6 MI (1.0 KM) ALONG STATE ROUTE 401 TO THE JUNCTION OF
AC7670*A ROAD LEADING TO GATE 1 ON THE LEFT. TURN LEFT AND PROCEED
AC7670*NORTHWESTERLY 0.2 MI (0.3 KM) ALONG THE ROAD TO ANOTHER LEADING TO
AC7670*GATE 1. TURN LEFT AND PROCEED NORTH 0.05 MI (0.08 KM) TO GATE 1.
AC7670*CONTINUE THROUGH THE GATE AND ONTO THE PERIMETER ROAD. PROCEED
Westerly 0.15 MI (0.24 KM) along the perimeter road to the junction of Taxiway Charlie. Turn right and proceed northeast 0.4 MI (0.6 KM) to the approach end of Runway 24 and the station on the right. The station is located southeast of the hold line of Taxiway C for Runway 24.

The station is a bronze nos horizontal control disk stamped--BDL B 1992--set in the top of a 0.3 m (1.0 ft) diameter concrete monument. The station is located 21.9 m (71.9 ft) from TWY Light No 14-29 on a magnetic compass azimuth of 30 degrees, 13.7 m (44.9 ft) from the fifth taxiway light from the runway end on a magnetic compass azimuth of 100 degrees, 8.2 m (26.9 ft) from the PK nail with washer number 92 set in Taxiway Charlie on a magnetic compass azimuth of 76 degrees, 6.1 m (20.0 ft) from the centerline of the service road on a magnetic compass azimuth of 144 degrees. This station is designated as a secondary airport control station.

Station Recovery (2000)

Recovery note by National Geodetic Survey 2000 (DGA) recovered as described.
This mark is at Bradley Intl Airport (BDL).
The horizontal coordinates were established by GPS observations and adjusted by the National Geodetic Survey in May 2000.
The orthometric height was determined by GPS observations and a high-resolution geoid model.
GPS derived orthometric heights for airport stations designated as PACS or SACS are published to 2 decimal places. This maintains centimeter relative accuracy between the PACS and SACS. It does not indicate centimeter accuracy relative to other marks which are part of the NAVD 88 network.
Photographs are available for this station.
The X, Y, and Z were computed from the position and ellipsoidal ht.
The Laplace correction was computed from DEFLEC99 derived deflections.
The ellipsoidal height was determined by GPS observations and is referenced to NAD 83.
The geoid height was determined by GEOID03.
SUPERSEDED SURVEY CONTROL

AI5554
AI5554 ELLIP H (05/22/00) 22.79 (m) GP() 4

AI5554

AI5554 Superseded values are not recommended for survey control.
AI5554 NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums.
AI5554 See file dsdata.txt to determine how the superseded data were derived.

AI5554 U.S. NATIONAL GRID SPATIAL ADDRESS: 18TXM9197745557(NAD 83)
AI5554 MARKER: I = METAL ROD
AI5554 SETTING: 59 = STAINLESS STEEL ROD IN SLEEVE (10 FT. +)
AI5554 STAMPING: BDL C 1999
AI5554 MARK LOGO: NGS
AI5554 PROJECTION: FLUSH
AI5554 MAGNETIC: N = NO MAGNETIC MATERIAL
AI5554 STABILITY: B = PROBABLY HOLD POSITION/ELEVATION WELL
AI5554 SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR
AI5554 SATELLITE: SATELLITE OBSERVATIONS - September 25, 2000
AI5554 ROD/PIPE-DEPTH: 31.1 meters
AI5554 SLEEVE-DEPTH : 1.00 meters

AI5554 HISTORY - Date Condition Report By
AI5554 HISTORY - 1999 MONUMENTED WOOLPT
AI5554 HISTORY - 20000925 GOOD NGS

AI5554 STATION DESCRIPTION

AI5554 DESCRIBED BY WOOLPERT CONSULTANTS 1999 (ARL)
AI5554 THE STATION IS LOCATED APPROXIMATELY 9.0 KM (5.60 MI) WEST-SOUTHWEST
AI5554 FROM EAST WINDSOR, 5.7 KM (3.55 MI) WEST-NORTHWEST OF WINDSOR LOCKS,
AI5554 4.6 KM (2.85 MI) NORTH OF POQUONOCK, AT THE BRADLEY INTERNATIONAL
AI5554 AIRPORT. OWNERSHIP-- BRADLEY INTERNATIONAL AIRPORT, C/O STEVE KORTA
AI5554 AIRPORT MANAGER, BRADLEY INTERNATIONAL AIRPORT TERMINAL B, WINDSOR
AI5554 THIS STATION REQUIRE'S 24 HOUR NOTICE TO AIRPORT CONTACT FOR ACCESS.
AI5554 TO REACH THE STATION FROM THE JUNCTION OF INTERSTATE 91 (EXIT 40) AND
AI5554 STATE ROUTE 20, PROCEED WESTERLY 2.8 MI (4.5 KM) ALONG STATE ROUTE 20
AI5554 TO THE JUNCTION OF THE BRADLEY FIELD CONNECTOR. CONTINUE STRAIGHT
AI5554 ONTO THE BRADLEY FIELD CONNECTOR AND PROCEED NORTHEASTERLY 1.2 MI (1.9
AI5554 KM) TO THE MERGING OF THE CONNECTOR AND STATE ROUTE 401. CONTINUE
AI5554 NORTHEASTERLY 0.6 MI (1.0 KM) ALONG STATE ROUTE 401 TO THE JUNCTION OF
AI5554 A ROAD LEADING TO GATE C ON THE LEFT. TURN LEFT AND PROCEED
AI5554 NORTHEASTERLY 0.2 MI (0.3 KM) ALONG THE ROAD TO ANOTHER ROAD ON THE
AI5554 LEFT LEADING TO GATE C. TURN LEFT AND PROCEED NORTH 0.05 MI (0.08 KM)
AI5554 TO GATE C. PROCEED NORTH THROUGH THE GATE AND ONTO THE PERIMETER
AI5554 ROAD. PROCEED NORTHERLY ALONG THE PERIMETER ROAD 0.15 MI (0.24 KM) TO
AI5554 THE JUNCTION OF TAXIWAY CHARLIE. TURN RIGHT AND PROCEED 0.5 MI (0.8
AI5554 KM) ALONG TAXIWAY CHARLIE TO A SERVICE ROAD ON THE RIGHT, JUST PAST
AI5554 THE JUNCTION OF TAXIWAY KILO. TURN RIGHT AND PROCEED 0.05 MI (0.08
AI5554 KM) ALONG THE SERVICE ROAD TO THE TOP OF A BANK AND THE STATION ON THE
AI5554 RIGHT. THE STATION IS SET ONLINE WITH THE TAXIWAY LIGHT SOUTHWEST OF
AI5554 TAXIWAY KILO.
AI5554 THE STATION IS A PUNCH MARK ON THE TOP OF A 9/16-INCH STAINLESS STEEL
AI5554 ROD ENCASED IN A 1 M (3.3 FT) FINNED SLEEVE FILLED WITH NONTOXIC
AI5554 GREASE, DRIVEN TO A REFUSAL DEPTH OF 31.1 M, (102.0 FT) AND ENCASED IN
AI5554 A 5-INCH PVC PIPE WITH LOGO CAP STAMPED--BDL C 1999-- SET FLUSH WITH
AI5554 THE GROUND. THE STATION IS LOCATED 53.8 M (176.5 FT) FROM THE EDGE OF
AI5554 'PAVEMENT ONLINE WITH THE TAXIWAY LIGHTS ON A MAGNETIC COMPASS AZIMUTH OF 157 DEGREES, 49.7 M (163.1 FT) FROM THE SOUTHWEST CORNER OF THE AI5554 'SOUTHERN SHACK ON A MAGNETIC COMPASS AZIMUTH OF 290 DEGREES, 39.6 M AI5554 '(129.9 FT) FROM THE WEST CORNER OF THE CONCRETE PAD AT THE RPU ON A MAGNETIC COMPASS AZIMUTH OF 20 DEGREES, 35.8 M (117.5 FT) FROM THE AI5554 'EXTENDED CENTERLINE OF TAXIWAY K ON A MAGNETIC COMPASS AZIMUTH OF 240 DEGREES, 21.0 M (68.9 FT) FROM THE SOUTHERN CORNER OF THE CATCH BASIN AI5554 'ON A MAGNETIC COMPASS AZIMUTH OF 190 DEGREES. THE STATION IS DESIGNATED AS THE PRIMARY AIRPORT CONTROL STATION.

AI5554

STATION RECOVERY (2000)

AI5554

RECOVERY NOTE BY NATIONAL GEODETIC SURVEY 2000 (DGA)

RECOVERED IN GOOD CONDITION.

Ground Truth

GPS control monuments and the RMSE of their values.

<table>
<thead>
<tr>
<th>PID</th>
<th>designation</th>
<th>SP NAD83 easting</th>
<th>SP NAD83 northing</th>
<th>navd88</th>
<th>monument correction</th>
<th>lidar surface diff</th>
<th>Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI5568</td>
<td>CEF, B</td>
<td>373337.17</td>
<td>2892234.21</td>
<td>237.8</td>
<td></td>
<td>0.2907</td>
<td>0.08450649</td>
</tr>
<tr>
<td>MZ1405</td>
<td>A51</td>
<td>348946.25</td>
<td>2864962.78</td>
<td>157.77</td>
<td></td>
<td>0.309</td>
<td>0.095481</td>
</tr>
<tr>
<td>AI5567</td>
<td>CEF, A</td>
<td>376847.87</td>
<td>2897614.79</td>
<td>239.13</td>
<td>corrected from 4 cm below ground</td>
<td>-0.2881</td>
<td>0.08300161</td>
</tr>
<tr>
<td>AI5569</td>
<td>CEF, C</td>
<td>374523.62</td>
<td>2902451.97</td>
<td>240.8</td>
<td></td>
<td>0.4553</td>
<td>0.20729809</td>
</tr>
<tr>
<td>AI5553</td>
<td>BAFA</td>
<td>327991.01</td>
<td>2882880.82</td>
<td>244.9</td>
<td></td>
<td>0.3066</td>
<td>0.09400356</td>
</tr>
<tr>
<td>AB3269</td>
<td>BAF AP STA C</td>
<td>327540.4</td>
<td>2889140.5</td>
<td>264.5</td>
<td></td>
<td>0.064</td>
<td>0.004096</td>
</tr>
<tr>
<td>MZ1794</td>
<td>BARNES RESET</td>
<td>325832.59</td>
<td>2885754.81</td>
<td>263</td>
<td></td>
<td>0.5077</td>
<td>0.25775929</td>
</tr>
<tr>
<td>MZ1129</td>
<td>Z39</td>
<td>427469.2</td>
<td>2885665.22</td>
<td>334.68</td>
<td></td>
<td>0.4844</td>
<td>0.23464336</td>
</tr>
</tbody>
</table>

Total 2.13 1.0608
Avg. Error 0.27 0.1326
Points / RMSE 8.00 0.3641
GPS control was collected to establish control points at the Bradley International Airport calibration site. The survey work resulted in placing 5 ground photo panels CAL 1001 through 1005 at the calibration site.

<table>
<thead>
<tr>
<th>Aerial Target</th>
<th>Grid Northing</th>
<th>Grid Easting</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>902033.28</td>
<td>1020995.95</td>
<td>167.01</td>
</tr>
<tr>
<td>1002</td>
<td>901760.75</td>
<td>1021462.44</td>
<td>167.78</td>
</tr>
<tr>
<td>1003</td>
<td>900747.97</td>
<td>1020547.65</td>
<td>166.39</td>
</tr>
<tr>
<td>1004</td>
<td>900702.81</td>
<td>1021371.76</td>
<td>165.79</td>
</tr>
<tr>
<td>1005</td>
<td>901402.17</td>
<td>1020628.27</td>
<td>168.34</td>
</tr>
</tbody>
</table>

Notes:

2- Numbers and locations of Aerial Targets are taken from the Ortho Photo provided by Spectrum Mapping for Bradley International Airport.
GROUND CONTROL REPORT
Base Station Information

All base station information, notes, GPS station monument names and stability Massachusetts:

PID - AC7670
Designation – BDL B
Projection – Flush
Stability – C – May hold, but of type commonly subject to surface motion.

Point AC7670 is located at the Bradley International Airport, CT. Point AC7670 is horizontal order first and fourth order class I ellipsoid order. The station is located 21.9 m from TWY light number 14-29. 13.7 m from the fifth taxiway light from the runway end. 8.2 m from the PK nail with washer number 92 set in taxiway Charlie, and 6.1 m from the centerline of the service road.

AC7670 SACS - This is a Secondary Airport Control Station.
AC7670 DESIGNATION - BDL B
AC7670 PID - AC7670
AC7670 STATE/COUNTY- CT/HARTFORD
AC7670 USGS QUAD - WINDSOR LOCKS (1984)
AC7670
AC7670 *CURRENT SURVEY CONTROL
AC7670
AC7670* NAD 83(1996)- 41 57 00.32545(N) 072 40 16.36405(W) ADJUSTED
AC7670* NAVD 88 - 47.34 (meters) 155.3 (feet) GPS OBS
AC7670
AC7670 X - 1,415,023.609 (meters) COMP
AC7670 Y - 4,535,090.999 (meters) COMP
AC7670 Z - 4,241,494.757 (meters) COMP
AC7670 LAPLACE CORR- -2.73 (seconds) DEFLEC99
AC7670 ELLIP HEIGHT- 18.30 (meters) (06/04/02) GPS OBS
AC7670 GEOID HEIGHT- -29.07 (meters) GEOID03
AC7670
AC7670 HORZ ORDER - FIRST
AC7670 ELLP ORDER - FOURTH CLASS I
AC7670
AC7670 This mark is at Bradley Intl Airport (BDL)
AC7670
AC7670 The horizontal coordinates were established by GPS observations and adjusted by the National Geodetic Survey in May 2000.
AC7670
AC7670 The orthometric height was determined by GPS observations and a high-resolution geoid model.
AC7670
AC7670 GPS derived orthometric heights for airport stations designated as PACS or SACS are published to 2 decimal places. This maintains centimeter relative accuracy between the PACS and SACS. It does not indicate centimeter accuracy relative to other marks which are part of the NAVD 88 network.
AC7670
Photographs are available for this station.

The X, Y, and Z were computed from the position and the ellipsoidal ht.

The Laplace correction was computed from DEFLEC99 derived deflections.

The ellipsoidal height was determined by GPS observations and is referenced to NAD 83.

The geoid height was determined by GEOID03.

The geoid height was determined by GEOID03.

North East Units Scale Factor Converg.
SPC CT 276,432.228 311,333.395 MT 1.00000952 +0 03 08.1
UTM 18 4,646,857.849 693,021.043 MT 1.00005847 +1 33 26.0

Elev Factor x Scale Factor = Combined Factor
SPC CT 0.99999713 x 1.00000952 = 1.00000665
UTM 18 0.99999713 x 1.00005847 = 1.00005560

SUPERSEDED SURVEY CONTROL

No superseded survey control is available for this station.

U.S. NATIONAL GRID SPATIAL ADDRESS: 18TXM9302146858(NAD 83)
MARKER: DD = SURVEY DISK
SETTING: 7 = SET IN TOP OF CONCRETE MONUMENT
STAMPING: BDL B 1992
MARK LOGO: NGS
PROJECTION: FLUSH
MAGNETIC: N = NO MAGNETIC MATERIAL
STABILITY: C = MAY HOLD, BUT OF TYPE COMMONLY SUBJECT TO
+STABILITY: SURFACE MOTION
SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR
+SATELLITE: SATELLITE OBSERVATIONS - September 25, 2000

HISTORY - Date Condition Report By
1992 MONUMENTED NGS
19991206 GOOD WOOLPT
20000925 GOOD NGS

STATION DESCRIPTION

DEScribed by National Geodetic Survey 1992 (GFS)
OF THE STATION IS LOCATED AT THE BRADLEY INTERNATIONAL AIRPORT SOUTHEAST
OF RUNWAY END 24. IT IS 95.3 FT (29.0 M) SOUTHEAST OF THE CENTERLINE
OF THE TAXIWAY, 72.1 FT (22.0 M) NORTHEAST OF THE 6TH TAXIWAY LIGHT
SOUTHWEST OF THE RUNWAY END, 45.5 FT (13.9 M) SOUTHEAST OF THE LINE
EXTENDED OF THE HOLDBAR, 44.7 FT (13.6 M) SOUTHEAST OF THE 5TH TAXIWAY
LIGHT FROM THE RUNWAY END, 26.8 FT (8.2 M) NORTHEAST OF A P-K NAIL AND
WASHER SET IN THE SHOULDER OF THE TAXIWAY AND SOUTHEAST OF THE FAA
ROAD TO THE APPROACH LIGHT LANE. THE STATION IS A STANDARD NOS DISK
STAMPED BDL B 1992 SET IN THE TOP OF A 8-INCH CONCRETE POST WHICH IS
FLUSH WITH THE GROUND.

AC7670
AC7670

STATION RECOVERY (1999)

AC7670

AC7670'RECOVERY NOTE BY WOOLPERT CONSULTANTS 1999 (WLP)

AC7670'THIS STATION REQUIRES 24 HOUR NOTICE TO AIRPORT CONTACT FOR ACCESS.

AC7670'TO REACH THE STATION FROM THE JUNCTION OF INTERSTATE 91 (EXIT 40) AND STATE ROUTE 20, PROCEED WESTERLY 2.8 MI (4.5 KM) ALONG STATE ROUTE 20 TO THE JUNCTION OF THE BRADLEY FIELD CONNECTOR. CONTINUE STRAIGHT ON THE BRADLEY FIELD CONNECTOR AND PROCEED NORTHEASTERLY 1.2 MI (1.9 KM) TO THE MERGING OF THE CONNECTOR AND STATE ROUTE 401. CONTINUE NORTHEASTERLY 0.6 MI (1.0 KM) ALONG STATE ROUTE 401 TO THE JUNCTION OF A ROAD LEADING TO GATE 1 ON THE LEFT. TURN LEFT AND PROCEED NORTH 0.05 MI (0.08 KM) TO GATE 1. CONTINUE THROUGH THE GATE AND PROCEED NORTH 0.15 MI (0.24 KM) ALONG THE PERIMETER ROAD. TURN RIGHT AND PROCEED NORTHEAST 0.4 MI (0.6 KM) TO THE APPROACH END OF RUNWAY 24 AND THE STATION ON THE RIGHT. THE STATION IS LOCATED SOUTHEAST OF THE HOLD LINE OF TAXIWAY C FOR RUNWAY 24.

AC7670'THE STATION IS A BRONZE NOS HORIZONTAL CONTROL DISK STAMPED--BDL B 1992-- SET IN THE TOP OF A 0.3 M (1.0 FT) DIAMETER CONCRETE MONUMENT.

AC7670'THE STATION IS LOCATED 21.9 M (71.9 FT) FROM TWY LIGHT NO 14-29 ON A MAGNETIC COMPASS AZIMUTH OF 30 DEGREES, 13.7 M (44.9 FT) FROM THE FIFTH TAXIWAY LIGHT FROM THE RUNWAY END ON A MAGNETIC COMPASS AZIMUTH OF 100 DEGREES, 8.2 M (26.9 FT) FROM THE PK NAIL WITH WASHER NUMBER 92 ON A MAGNETIC COMPASS AZIMUTH OF 76 DEGREES, 6.1 M (20.0 FT) FROM THE CENTERLINE OF THE SERVICE ROAD ON A MAGNETIC COMPASS AZIMUTH OF 144 DEGREES. THIS STATION IS DESIGNATED AS A SECONDARY AIRPORT CONTROL STATION.

AC7670

AC7670

STATION RECOVERY (2000)

AC7670

AC7670'RECOVERY NOTE BY NATIONAL GEODETIC SURVEY 2000 (DGA)

AC7670'RECOVERED AS DESCRIBED.

AC7670'
Point AI5554 is located at the Bradley International Airport, CT. Point AC7670 is horizontal order B and fourth order class I ellipsoid order. This is a primary airport control station.

The station is located 53.8 m from the edge of pavement oline with the taxiway lights, 49.7 m from the southwest corner of the southern shack, 39.6 m from the west corner of the concrete pad at the RPU, 35.8 m from the extended centerline of taxiway K, and 21.0 m from the southern corner of the catch basin.

AI5554 PACS - This is a Primary Airport Control Station.
AI5554 DESIGNATION - BDL C
AI5554 PID - AI5554
AI5554 STATE/COUNTY - CT/HARTFORD
AI5554 USGS QUAD - WINDSOR LOCKS (1984)
AI5554
AI5554 *CURRENT SURVEY CONTROL
AI5554
AI5554 NAD 83(1996) - 41 56 19.10654(N) 072 41 03.20619(W) ADJUSTED
AI5554 NAVD 88 - 51.84 (meters) 170.1 (feet) GPS OBS
AI5554
AI5554 X - 1,414,247.669 (meters) COMP
AI5554 Y - -4,536,226.947 (meters) COMP
AI5554 Z - 4,240,551.847 (meters) COMP
AI5554 LAPLACE CORR - -2.99 (seconds) DEFLEC99
AI5554 ELLIP HEIGHT - 22.80 (meters) (06/04/02) GPS OBS
AI5554 GEOID HEIGHT - -29.07 (meters) GEOID03
AI5554
AI5554 HORZ ORDER - B
AI5554 ELLP ORDER - FOURTH CLASS I
AI5554
AI5554 This mark is at Bradley Intl Airport (BDL)
AI5554
AI5554 The horizontal coordinates were established by GPS observations and adjusted by the National Geodetic Survey in May 2000.
AI5554
AI5554 The orthometric height was determined by GPS observations and a high-resolution geoid model.
AI5554
AI5554 GPS derived orthometric heights for airport stations designated as PACS or SACS are published to 2 decimal places. This maintains centimeter relative accuracy between the PACS and SACS. It does not indicate centimeter accuracy relative to other marks which are part of the NAVD 88 network.
AI5554
AI5554 Photographs are available for this station.
AI5554
AI5554 The X, Y, and Z were computed from the position and the ellipsoidal ht.
The Laplace correction was computed from DEFLEC99 derived deflections.

The ellipsoidal height was determined by GPS observations and is referenced to NAD 83.

The geoid height was determined by GEOID03.

<table>
<thead>
<tr>
<th></th>
<th>North</th>
<th>East</th>
<th>Units</th>
<th>Scale Factor</th>
<th>Convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC CT</td>
<td>275,159.572</td>
<td>310,255.482</td>
<td>MT</td>
<td>1.00000808</td>
<td>+0 02 37.0</td>
</tr>
<tr>
<td>UTM 18</td>
<td>4,645,557.263</td>
<td>691,976.872</td>
<td>MT</td>
<td>1.00005352</td>
<td>+1 32 53.5</td>
</tr>
</tbody>
</table>

Elev Factor \times Scale Factor = Combined Factor

SPC CT: 0.99999642 \times 1.00000808 = 1.00000450

UTM 18: 0.99999642 \times 1.00005352 = 1.00004994

SUPERSEDED SURVEY CONTROL

ELLIP H (05/22/00) 22.79 (m) GP() 4 1

Superseded values are not recommended for survey control.

NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums.

See file dsdata.txt to determine how the superseded data were derived.

U.S. NATIONAL GRID SPATIAL ADDRESS: 18TXM9197745557 (NAD 83)

MARKER: I = METAL ROD

SETTING: 59 = STAINLESS STEEL ROD IN SLEEVE (10 FT.+)

STAMPING: BDL C 1999

MARK LOGO: NGS

PROJECTION: FLUSH

MAGNETIC: N = NO MAGNETIC MATERIAL

STABILITY: B = PROBABLY HOLD POSITION/ELEVATION WELL

SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR SATELLITE OBSERVATIONS - September 25, 2000

ROD/PIPE-DEPTH: 31.1 meters

SLEEVE-DEPTH : 1.00 meters

HISTORY - Date Condition Report By

- 1999 MONUMENTED WOOLPT
- 20000925 GOOD NGS

STATION DESCRIPTION

DESCRIBED BY WOOLPERT CONSULTANTS 1999 (ARL)

THIS STATION REQUIRES 24 HOUR NOTICE TO AIRPORT CONTACT FOR ACCESS.

TO REACH THE STATION FROM THE JUNCTION OF INTERSTATE 91 (EXIT 40) AND STATE ROUTE 20, PROCEED WESTERLY 2.8 MI (4.5 KM) ALONG STATE ROUTE 20 TO THE JUNCTION OF THE BRADLEY FIELD CONNECTOR. CONTINUE STRAIGHT
AI5554'ONTO THE BRADLEY FIELD CONNECTOR AND PROCEED NORTHEASTERLY 1.2 MI (1.9
AI5554'KM) TO THE MERGING OF THE CONNECTOR AND STATE ROUTE 401. CONTINUE
AI5554'NORTHEASTERLY 0.6 MI (1.0 KM) ALONG STATE ROUTE 401 TO THE JUNCTION OF
AI5554'A ROAD LEADING TO GATE C ON THE LEFT. TURN LEFT AND PROCEED
AI5554'NORTHWESTERLY 0.2 MI (0.3 KM) ALONG THE ROAD TO ANOTHER ROAD ON THE
AI5554'LEFT LEADING TO GATE C. TURN LEFT AND PROCEED NORTH 0.05 MI (0.08 KM)
AI5554'TO GATE C. PROCEED NORTH THROUGH THE GATE AND ONTO THE PERIMETER
AI5554'ROAD. PROCEED NORTHERLY ALONG THE PERIMETER ROAD 0.15 MI (0.24 KM) TO
AI5554'THE JUNCTION OF TAXIWAY CHARLIE. TURN RIGHT AND PROCEED 0.5 MI (0.8
AI5554'KM) ALONG TAXIWAY CHARLIE TO A SERVICE ROAD ON THE RIGHT. JUST PAST
AI5554'THE JUNCTION OF TAXIWAY KILO. TURN RIGHT AND PROCEED 0.05 MI (0.08
AI5554'KM) ALONG THE SERVICE ROAD TO THE TOP OF A BANK AND THE STATION ON THE
AI5554'RIGHT. THE STATION IS SET ONLINE WITH THE TAXIWAY LIGHT SOUTHWEST OF
AI5554'TAXIWAY KILO.
AI5554'THE STATION IS A PUNCH MARK ON THE TOP OF A 9/16-INCH STAINLESS STEEL
AI5554'ROD ENCASED IN A 1 M (3.3 FT) FINNED SLEEVE FILLED WITH NONTOXIC
AI5554'GREASE, DRIVEN TO A REFUSAL DEPTH OF 31.1 M, (102.0 FT) AND ENCASED IN
AI5554'A 5-INCH PVC PIPE WITH LOGO CAP STAMPED--BDL C 1999-- SET FLUSH WITH
AI5554'THE GROUND. THE STATION IS LOCATED 53.8 M (176.5 FT) FROM THE EDGE OF
AI5554'Pavement online with the taxiway lights on a magnetic compass azimuth
AI5554'OF 157 DEGREES, 49.7 M (163.1 FT) FROM THE SOUTHWEST CORNER OF THE
AI5554'SOUTHERN SHACK ON A MAGNETIC COMPASS AZIMUTH OF 290 DEGREES, 39.6 M
AI5554'(129.9 FT) FROM THE WEST CORNER OF THE CONCRETE PAD AT THE RPU ON A
AI5554'MAGNETIC COMPASS AZIMUTH OF 20 DEGREES, 35.8 M (117.5 FT) FROM THE
AI5554'EXTENDED CENTERLINE OF TAXIWAY K ON A MAGNETIC COMPASS AZIMUTH OF 240
AI5554'DEGREES, 21.0 M (68.9 FT) FROM THE SOUTHERN CORNER OF THE CATCH BASIN
AI5554'ON A MAGNETIC COMPASS AZIMUTH OF 190 DEGREES. THE STATION IS
AI5554'DESIGNATED AS THE PRIMARY AIRPORT CONTROL STATION.
AI5554
AI5554
AI5554
STATION RECOVERY (2000)
AI5554
AI5554
RECOVERY NOTE BY NATIONAL GEODETIC SURVEY 2000 (DGA)
AI5554
RECOVERED IN GOOD CONDITION.
Checkpoint Survey
Mass Notes: Coordinates are in US Survey Feet and reference the Mass. 1983 American Datum (NAD83/2001)
Elevations are in US Survey feet and reference North American Vertical Datum of 1988 (NAVD88). The picture below shows the area the MA check point survey was completed.
MA – Check Point Survey

<table>
<thead>
<tr>
<th>Site #</th>
<th>ID</th>
<th>Type</th>
<th>Northing</th>
<th>Easting</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>228</td>
<td>WOD</td>
<td>2907654.32</td>
<td>355896.98</td>
<td>123.57</td>
</tr>
<tr>
<td></td>
<td>229</td>
<td>GRA</td>
<td>2907506.19</td>
<td>355940.69</td>
<td>131.80</td>
</tr>
<tr>
<td></td>
<td>502</td>
<td>PAV</td>
<td>2907590.20</td>
<td>355930.00</td>
<td>129.29</td>
</tr>
<tr>
<td></td>
<td>226</td>
<td>WOD-S</td>
<td>2907595.29</td>
<td>355865.69</td>
<td>124.46</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>PAV-S</td>
<td>2907503.75</td>
<td>355892.66</td>
<td>131.16</td>
</tr>
<tr>
<td></td>
<td>184</td>
<td>GRA-S</td>
<td>2907399.76</td>
<td>355919.23</td>
<td>129.97</td>
</tr>
<tr>
<td>2</td>
<td>161</td>
<td>WOD</td>
<td>2922391.82</td>
<td>357471.12</td>
<td>108.77</td>
</tr>
<tr>
<td></td>
<td>701</td>
<td>PAV</td>
<td>2922735.26</td>
<td>358207.05</td>
<td>114.22</td>
</tr>
<tr>
<td></td>
<td>702</td>
<td>GRA</td>
<td>2922545.56</td>
<td>357718.01</td>
<td>114.56</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>PAV-S</td>
<td>2922765.19</td>
<td>358220.92</td>
<td>111.90</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>GRA-S</td>
<td>2922898.14</td>
<td>358246.29</td>
<td>105.95</td>
</tr>
<tr>
<td></td>
<td>148</td>
<td>WOD-S</td>
<td>2922733.15</td>
<td>357979.29</td>
<td>106.93</td>
</tr>
<tr>
<td>3</td>
<td>1211</td>
<td>WOD</td>
<td>2889870.91</td>
<td>349877.42</td>
<td>62.56</td>
</tr>
<tr>
<td></td>
<td>1212</td>
<td>GRA</td>
<td>2889844.27</td>
<td>349444.34</td>
<td>90.04</td>
</tr>
<tr>
<td></td>
<td>1210</td>
<td>PAV</td>
<td>2889796.90</td>
<td>349778.18</td>
<td>61.78</td>
</tr>
<tr>
<td>4</td>
<td>1410</td>
<td>WOD</td>
<td>2878485.47</td>
<td>352622.68</td>
<td>63.58</td>
</tr>
<tr>
<td></td>
<td>1411</td>
<td>PAV</td>
<td>2878454.67</td>
<td>352383.68</td>
<td>61.32</td>
</tr>
<tr>
<td></td>
<td>1401</td>
<td>GRA</td>
<td>2878012.96</td>
<td>352935.05</td>
<td>59.23</td>
</tr>
<tr>
<td>5</td>
<td>1510</td>
<td>PAV</td>
<td>2873667.35</td>
<td>351690.62</td>
<td>58.44</td>
</tr>
<tr>
<td></td>
<td>1512</td>
<td>WOD</td>
<td>2873559.02</td>
<td>351180.61</td>
<td>55.75</td>
</tr>
<tr>
<td></td>
<td>1513</td>
<td>GRA</td>
<td>2874682.92</td>
<td>352244.35</td>
<td>57.30</td>
</tr>
<tr>
<td>6</td>
<td>1901</td>
<td>GRA</td>
<td>2860347.34</td>
<td>360056.54</td>
<td>56.17</td>
</tr>
<tr>
<td></td>
<td>1910</td>
<td>WOD</td>
<td>2860559.98</td>
<td>360111.33</td>
<td>47.56</td>
</tr>
<tr>
<td></td>
<td>1911</td>
<td>PAV</td>
<td>2860375.75</td>
<td>359979.18</td>
<td>55.17</td>
</tr>
<tr>
<td>7</td>
<td>2310</td>
<td>GRA</td>
<td>2843124.11</td>
<td>354245.87</td>
<td>52.05</td>
</tr>
<tr>
<td></td>
<td>2311</td>
<td>WOD</td>
<td>2843012.29</td>
<td>354249.40</td>
<td>60.03</td>
</tr>
<tr>
<td></td>
<td>2312</td>
<td>PAV</td>
<td>2843143.68</td>
<td>353849.26</td>
<td>54.61</td>
</tr>
</tbody>
</table>
CT Notes: Coordinates are in US Survey Feet and reference the CT 1983 North American Datum (NAD83/2001). Elevations are in US Survey feet and reference North American Vertical Datum of 1988 (NAVD88). The picture below shows the area the checkpoint survey was conducted in CT.
<table>
<thead>
<tr>
<th>Site #</th>
<th>ID</th>
<th>Type</th>
<th>Northing</th>
<th>Easting</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>99801</td>
<td>PAV</td>
<td>920980.34</td>
<td>1036880.16</td>
<td>123.95</td>
</tr>
<tr>
<td></td>
<td>99802</td>
<td>GRA</td>
<td>921137.91</td>
<td>1036763.42</td>
<td>124.34</td>
</tr>
<tr>
<td></td>
<td>99803</td>
<td>WOD</td>
<td>921236.96</td>
<td>1036878.03</td>
<td>127.04</td>
</tr>
<tr>
<td>9</td>
<td>99901</td>
<td>PAV</td>
<td>911423.01</td>
<td>1034876.33</td>
<td>102.31</td>
</tr>
<tr>
<td></td>
<td>99902</td>
<td>GRA</td>
<td>911581.69</td>
<td>1034848.27</td>
<td>100.91</td>
</tr>
<tr>
<td></td>
<td>99903</td>
<td>WOD</td>
<td>911680.95</td>
<td>1034728.85</td>
<td>102.16</td>
</tr>
<tr>
<td>10</td>
<td>991001</td>
<td>PAV</td>
<td>890331.19</td>
<td>1032210.70</td>
<td>41.21</td>
</tr>
<tr>
<td></td>
<td>991002</td>
<td>GRA</td>
<td>890213.50</td>
<td>1032336.72</td>
<td>34.72</td>
</tr>
<tr>
<td></td>
<td>991003</td>
<td>WOD</td>
<td>890024.69</td>
<td>1032365.69</td>
<td>31.96</td>
</tr>
<tr>
<td>11</td>
<td>991101</td>
<td>PAV</td>
<td>858662.19</td>
<td>1026428.27</td>
<td>80.27</td>
</tr>
<tr>
<td></td>
<td>991102</td>
<td>GRA</td>
<td>858590.04</td>
<td>1026254.50</td>
<td>91.28</td>
</tr>
<tr>
<td></td>
<td>991103</td>
<td>WOD</td>
<td>858472.69</td>
<td>1026281.67</td>
<td>84.87</td>
</tr>
<tr>
<td>12</td>
<td>991201</td>
<td>PAV</td>
<td>843260.16</td>
<td>1022612.29</td>
<td>13.84</td>
</tr>
<tr>
<td></td>
<td>991202</td>
<td>GRA</td>
<td>843674.95</td>
<td>1022801.07</td>
<td>14.17</td>
</tr>
<tr>
<td></td>
<td>991203</td>
<td>WOD</td>
<td>843031.36</td>
<td>1022706.71</td>
<td>14.35</td>
</tr>
<tr>
<td>13</td>
<td>991301</td>
<td>PAV</td>
<td>823144.23</td>
<td>1025288.57</td>
<td>37.42</td>
</tr>
<tr>
<td></td>
<td>991302</td>
<td>GRA</td>
<td>823178.80</td>
<td>1025130.46</td>
<td>33.90</td>
</tr>
<tr>
<td></td>
<td>991303</td>
<td>WOD</td>
<td>823283.70</td>
<td>1024837.70</td>
<td>32.60</td>
</tr>
<tr>
<td>14</td>
<td>991401</td>
<td>PAV</td>
<td>797455.98</td>
<td>1029671.24</td>
<td>146.13</td>
</tr>
<tr>
<td></td>
<td>991402</td>
<td>GRA</td>
<td>797470.87</td>
<td>1029824.34</td>
<td>147.59</td>
</tr>
<tr>
<td></td>
<td>991403</td>
<td>WOD</td>
<td>797407.96</td>
<td>1029567.46</td>
<td>137.45</td>
</tr>
<tr>
<td>15</td>
<td>991501</td>
<td>PAV</td>
<td>780391.10</td>
<td>1037799.46</td>
<td>9.55</td>
</tr>
<tr>
<td></td>
<td>991502</td>
<td>GRA</td>
<td>780373.10</td>
<td>1037466.12</td>
<td>10.34</td>
</tr>
<tr>
<td></td>
<td>991503</td>
<td>WOD</td>
<td>780267.51</td>
<td>1037143.02</td>
<td>11.09</td>
</tr>
<tr>
<td>16</td>
<td>991601</td>
<td>PAV</td>
<td>761108.90</td>
<td>1033115.02</td>
<td>172.12</td>
</tr>
<tr>
<td></td>
<td>991602</td>
<td>GRA</td>
<td>761123.53</td>
<td>1032826.63</td>
<td>168.00</td>
</tr>
<tr>
<td></td>
<td>991603</td>
<td>WOD</td>
<td>761018.00</td>
<td>1032818.44</td>
<td>167.83</td>
</tr>
<tr>
<td>17</td>
<td>991701</td>
<td>PAV</td>
<td>724406.02</td>
<td>1077884.17</td>
<td>6.62</td>
</tr>
<tr>
<td></td>
<td>991702</td>
<td>GRA</td>
<td>723976.37</td>
<td>1077964.00</td>
<td>6.82</td>
</tr>
<tr>
<td></td>
<td>991703</td>
<td>WOD</td>
<td>723794.94</td>
<td>1077845.41</td>
<td>6.83</td>
</tr>
<tr>
<td>17-S</td>
<td>991708</td>
<td>PAV-S</td>
<td>762773.11</td>
<td>1045930.72</td>
<td>47.83</td>
</tr>
<tr>
<td></td>
<td>991709</td>
<td>GRA-S</td>
<td>762800.68</td>
<td>1045802.84</td>
<td>52.90</td>
</tr>
<tr>
<td>18</td>
<td>991801</td>
<td>PAV</td>
<td>724741.86</td>
<td>1077808.18</td>
<td>7.45</td>
</tr>
<tr>
<td>Site #</td>
<td>ID</td>
<td>Type</td>
<td>Northing</td>
<td>Easting</td>
<td>Elevation</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>991802</td>
<td>GRA</td>
<td>724459.56</td>
<td>1078091.47</td>
<td>6.82</td>
</tr>
<tr>
<td></td>
<td>991803</td>
<td>WOD</td>
<td>724913.67</td>
<td>1078037.37</td>
<td>6.62</td>
</tr>
<tr>
<td></td>
<td>991901</td>
<td>PAV</td>
<td>705016.67</td>
<td>1088699.31</td>
<td>6.87</td>
</tr>
<tr>
<td>19</td>
<td>991902</td>
<td>GRA</td>
<td>705068.86</td>
<td>1088633.19</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td>991903</td>
<td>WOD</td>
<td>705093.71</td>
<td>1088575.15</td>
<td>10.50</td>
</tr>
<tr>
<td>20</td>
<td>992001</td>
<td>PAV</td>
<td>679192.91</td>
<td>1102663.78</td>
<td>49.74</td>
</tr>
<tr>
<td></td>
<td>992002</td>
<td>GRA</td>
<td>679126.06</td>
<td>1102733.37</td>
<td>50.04</td>
</tr>
<tr>
<td></td>
<td>992003</td>
<td>WOD</td>
<td>679325.32</td>
<td>1102800.50</td>
<td>44.94</td>
</tr>
</tbody>
</table>
SYSTEM CALIBRATION REPORT
System Calibration

The Spectrum RAMS LIDAR system uses multiple layers of system calibration. The initial instrument calibration is accomplished during the system fabrication. All critical components (IMU, LIDAR, Camera, and Scanner) are optically aligned to a common optical bench using NIST traceable optical collimators and optical flats. This alignment is initially carried out to 2 arc seconds. In addition to the optical bench calibration, the LIDAR system is operated against a series of known targets to determine both scale factor and bias accuracy. All system timing is derived from GPS.

On any aircraft installation the critical factor is location of the GPS antenna and IMU positioning with respect to the RAMS optical reference. This is accomplished through a differential GPS survey. After installation in the aircraft, the system is then flown against a ground test range that was developed using high accuracy GPS points from a licensed surveyor. This range provides several hundred points that are used to statistically verify the in flight calibration.

One of the benefits of a LIDAR system is that the calibration of the system is verified each time two or more flight lines are combined. This is a result of taking measurements on a common point from multiple locations (i.e. the ground point is fixed and each flight line that sees this is a different instrument location). When multiple flight lines can be combined with no artifacts then the calibration of the system is validated in terms of range and angular accuracies. Our standard practice requires that at least one flight line within the project be flown in both directions for calibration verification of range and angular accuracy.

Another important area of quality control is edge matching. All edge matching discrepancies in LIDAR DEM data occur between two flight lines. Identification of edge matching discrepancies is performed by overlaying either the contour or the shaded relief model representation of the original DEM. If edge artifacts are found in the overlap area between two flight lines then this represents an edge discrepancy. The GPS / IMU data is then reevaluated to check for any possible errors in the post processing or a spike in the PDOP at the time of data acquisition. Usually this type of problem is resolved by reprocessing the GPS / IMU.

For accuracy verification, static survey points are collected, using static benchmarks where available. These survey points within the project boundary are selected to allow a statistical absolute elevation verification of the data. This data set is then statistically compared to the project LIDAR DEM data after the combination of flight lines to verify accuracy both horizontal and vertical. The RMSE (Root Mean Square Error) of the LIDAR DEM will be calculated using the ground GPS data to ensure that the vertical error is less than 0.15 m and the horizontal is less than 0.5 m.
GPS / Calibration Processing Summary

All GPS phase data was post-processed with continuous kinematic survey techniques using “On the Fly” (OTF) integer ambiguity resolution. The GPS data was processed with forward and reverse processing algorithms. The results from each process were combined to yield a single fixed integer phase differential solution of the aircraft trajectory. Plots of altitude and the forward and reverse GPS solution residuals (RMS and DOP) are attached for each day of flight. Spikes in the vertical component of these plots occur in turns and ferrying to and from collection sites, and do not affect the integrity of the solution. The RMS separation values (25%-75% weighting) for all flights are summarized below.

The Processing Summary provides statistics about the final solution. The processing summary includes details such as solution type, baseline distances, number of epochs in total, epochs not processed, and epochs with bad C/A code and L1 phase measurements.

Statistics such as RMS values of the C/A code, L1 phase, L1 Doppler measurements, quality number percentages, estimated position standard deviations calculated from the Kalman filtering, and percentages of epochs having double difference DOPs over 10, provide a quick, convenient method of assessing processed solutions. The forward/reverse separation RMS values for Easting (E), Northing(N), and Heighting (H) are listed, and the forward/reverse separation RMS values of E,N, and H for 25%-75% weighting.

The latter RMS values take into account the weighting of the forward/reverse combined solution only in the region of 25%-75% where the float solution has had time to converge to a lower value of error since the larger error values occur at the beginning of the processing direction. The same can be said for a Kinematic Ambiguity Resolution (KAR) fixed solution as well. The RMS values for the 25%-75% weighting of the combined solution are generally lower than the RMS values from the forward/reverse separation because if one solution has high error values, most of the weighting will go to the other processing direction.

The following is checked in the Processing Summary:

The forward/reverse separation RMS values of E, N, and H are generally low if a fixed integer solution has been obtained. The values should be less than 0.05 meters, but no greater than 0.10 meters. The Quality Number Percentages should almost all be Quality 1. This number is typically close to 100%, with 1% in Quality 2 for a fixed integer solution.
Processing Summary Information

The processing summaries below are for every mission used in the CT River project. This GPS data includes all turns, where you could have higher quality numbers due to the unstable nature of a turn, and greater baseline distances.

Program: GrafNav
Version: 6.03
Project: June 4, 2004 mission 2
Solution Type: Combined Fwd/Rev

Number of Epochs:
- Total in GPB file: 16423
- No processed position: 8219
- Missing Fwd or Rev: 1
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:
- L1 Phase: 0.0206 (m)
- C/A Code: 1.27 (m)
- L1 Doppler: 0.026 (m/s)

Fwd/Rev Separation RMS Values:
- East: 0.013 (m)
- North: 0.026 (m)
- Height: 0.061 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (8200 occurrences):
- East: 0.008 (m)
- North: 0.021 (m)
- Height: 0.057 (m)
Quality Number Percentages:

Q 1: 100.0 %
Q 2: 0.0 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 92.3 %
0.10 - 0.30 m: 7.7 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 0.0 %

Baseline Distances:

Maximum: 45.567 (km)
Minimum: 0.198 (km)
Average: 15.936 (km)
First Epoch: 0.201 (km)
Last Epoch: 0.201 (km)
Program: GrafNav
Version: 6.03
Project: June 7, 2004

Solution Type: Combined Fwd/Rev

Number of Epochs:

- Total in GPB file: 21116
- No processed position: 10563
- Missing Fwd or Rev: 1
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:
- L1 Phase: 0.0229 (m)
- C/A Code: 1.06 (m)
- L1 Doppler: 0.026 (m/s)

Fwd/Rev Separation RMS Values:
- East: 0.023 (m)
- North: 0.025 (m)
- Height: 0.035 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (10548 occurrences):
- East: 0.023 (m)
- North: 0.024 (m)
- Height: 0.027 (m)
Quality Number Percentages:

Q 1: 99.9 %
Q 2: 0.1 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 98.1 %
0.10 - 0.30 m: 1.9 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 0.0 %

Baseline Distances:

Maximum: 47.328 (km)
Minimum: 0.208 (km)
Average: 19.962 (km)
First Epoch: 0.209 (km)
Last Epoch: 0.246 (km)
Program: GrafNav
Version: 6.03
Project: **June 8, 2004**

Solution Type: Combined Fwd/Rev

Number of Epochs:
- Total in GPB file: 19628
- No processed position: 9814
- Missing Fwd or Rev: 1
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:
- L1 Phase: 0.0232 (m)
- C/A Code: 1.09 (m)
- L1 Doppler: 0.032 (m/s)

Fwd/Rev Separation RMS Values:
- East: 0.013 (m)
- North: 0.030 (m)
- Height: 0.029 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (9807 occurrences):
- East: 0.011 (m)
- North: 0.029 (m)
- Height: 0.024 (m)
Quality Number Percentages:

Q 1: 99.6 %
Q 2: 0.4 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 84.7 %
0.10 - 0.30 m: 15.3 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 15.3 %

Baseline Distances:

Maximum: 48.046 (km)
Minimum: 0.214 (km)
Average: 21.514 (km)
First Epoch: 0.214 (km)
Last Epoch: 0.218 (km)
Program: GrafNav
Version: 6.03
Project: **June 9, 2004**

Solution Type: Combined Fwd/Rev

Number of Epochs:
- Total in GPB file: 17575
- No processed position: 8790
- Missing Fwd or Rev: 0
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:
- L1 Phase: 0.0220 (m)
- C/A Code: 1.11 (m)
- L1 Doppler: 0.033 (m/s)

Fwd/Rev Separation RMS Values:
- East: 0.030 (m)
- North: 0.026 (m)
- Height: 0.089 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (8779 occurrences):
- East: 0.029 (m)
- North: 0.026 (m)
- Height: 0.089 (m)
Quality Number Percentages:

Q 1: 99.8 %
Q 2: 0.2 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 92.6 %
0.10 - 0.30 m: 7.4 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 7.4 %

Baseline Distances:

Maximum: 49.529 (km)
Minimum: 0.201 (km)
Average: 20.006 (km)
First Epoch: 0.201 (km)
Last Epoch: 0.223 (km)
Program: GrafNav
Version: 6.03
Project: **June 11, 2004 mission 1**

Solution Type: Combined Fwd/Rev

Number of Epochs:
- Total in GPB file: 23023
- No processed position: 11513
- Missing Fwd or Rev: 0
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:
- L1 Phase: 0.0226 (m)
- C/A Code: 1.17 (m)
- L1 Doppler: 0.032 (m/s)

Fwd/Rev Separation RMS Values:
- East: 0.019 (m)
- North: 0.034 (m)
- Height: 0.035 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (11504 occurrences):
- East: 0.019 (m)
- North: 0.028 (m)
- Height: 0.034 (m)
Quality Number Percentages:

Q 1: 99.8 %
Q 2: 0.2 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 94.6 %
0.10 - 0.30 m: 5.4 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 5.4 %

Baseline Distances:

Maximum: 40.766 (km)
Minimum: 0.197 (km)
Average: 17.804 (km)
First Epoch: 0.201 (km)
Last Epoch: 0.201 (km)
Program: GrafNav
Version: 6.03
Project: **June 11, 2004 mission 2**

Solution Type: Combined Fwd/Rev

Number of Epochs:

- Total in GPB file: 17650
- No processed position: 8824
- Missing Fwd or Rev: 0
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:

- L1 Phase: 0.0193 (m)
- C/A Code: 1.25 (m)
- L1 Doppler: 0.026 (m/s)

Fwd/Rev Separation RMS Values:

- East: 0.012 (m)
- North: 0.019 (m)
- Height: 0.044 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (8819 occurrences):

- East: 0.011 (m)
- North: 0.014 (m)
- Height: 0.044 (m)
Quality Number Percentages:

Q 1: 99.6 %
Q 2: 0.4 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 58.6 %
0.10 - 0.30 m: 41.4 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 0.0 %

Baseline Distances:

Maximum: 28.867 (km)
Minimum: 0.201 (km)
Average: 18.047 (km)
First Epoch: 0.201 (km)
Last Epoch: 0.228 (km)
Program: GrafNav
Version: 6.03
Project: **June 12, 2004**

Solution Type: Combined Fwd/Rev

Number of Epochs:
- Total in GPB file: 25114
- No processed position: 12560
- Missing Fwd or Rev: 1
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:
- L1 Phase: 0.0222 (m)
- C/A Code: 1.10 (m)
- L1 Doppler: 0.030 (m/s)

Fwd/Rev Separation RMS Values:
- East: 0.029 (m)
- North: 0.046 (m)
- Height: 0.077 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (12542 occurrences):
- East: 0.028 (m)
- North: 0.044 (m)
- Height: 0.075 (m)
Quality Number Percentages:

Q 1: 99.6 %
Q 2: 0.4 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 94.8 %
0.10 - 0.30 m: 5.1 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 5.1 %

Baseline Distances:

Maximum: 43.086 (km)
Minimum: 0.201 (km)
Average: 23.823 (km)
First Epoch: 0.201 (km)
Last Epoch: 0.243 (km)
Program: GrafNav
Version: 6.03
Project: **June 12, 2004**

Solution Type: Combined Fwd/Rev

Number of Epochs:

- Total in GPB file: 11687
- No processed position: 5842
- Missing Fwd or Rev: 0
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:

- L1 Phase: 0.0172 (m)
- C/A Code: 1.25 (m)
- L1 Doppler: 0.026 (m/s)

Fwd/Rev Separation RMS Values:

- East: 0.034 (m)
- North: 0.017 (m)
- Height: 0.055 (m)

Fwd/Rev Sep. RMS for 25%–75% weighting (5836 occurrences):

- East: 0.032 (m)
- North: 0.012 (m)
- Height: 0.047 (m)
Quality Number Percentages:

Q 1: 99.8 %
Q 2: 0.2 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 91.3 %
0.10 - 0.30 m: 8.7 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 0.0 %

Baseline Distances:

Maximum: 43.288 (km)
Minimum: 0.242 (km)
Average: 17.222 (km)
First Epoch: 0.243 (km)
Last Epoch: 0.246 (km)

Program: GrafNav
Version: 6.03
Project: **June 16, 2004**

Solution Type: Combined Fwd/Rev

Number of Epochs:

- Total in GPB file: 10763
- No processed position: 5384
- Missing Fwd or Rev: 0
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:

- L1 Phase: 0.0216 (m)
- C/A Code: 1.15 (m)
- L1 Doppler: 0.026 (m/s)

Fwd/Rev Separation RMS Values:

- East: 0.014 (m)
- North: 0.029 (m)
- Height: 0.049 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (5374 occurrences):

- East: 0.012 (m)
North: 0.024 (m)
Height: 0.046 (m)

Quality Number Percentages:
- Q 1: 89.3 %
- Q 2: 3.0 %
- Q 3: 6.5 %
- Q 4: 1.2 %
- Q 5: 0.0 %
- Q 6: 0.0 %

Position Standard Deviation Percentages:
- 0.00 - 0.10 m: 89.2 %
- 0.10 - 0.30 m: 10.8 %
- 0.30 - 1.00 m: 0.0 %
- 1.00 - 5.00 m: 0.0 %
- 5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:
- DOP over Tol: 10.4 %

Baseline Distances:
- Maximum: 45.257 (km)
- Minimum: 0.242 (km)
- Average: 11.676 (km)
- First Epoch: 0.242 (km)
- Last Epoch: 0.247 (km)
Program: POSGPS
Version: 4.10
Project: June 23, 2004
Solution Type: Combined Fwd/Rev
Number of Epochs:

- Total in GPB file: 31456
- No processed position: 15732
- Missing Fwd or Rev: 3
- With bad C/A code: 0
- With bad L1 Phase: 0
Measurement RMS Values:

- L1 Phase: 0.0195 (m)
- C/A Code: 0.69 (m)
- L1 Doppler: 0.025 (m/s)
Fwd/Rev Separation RMS Values:

- East: 0.040 (m)
- North: 0.046 (m)
- Height: 0.071 (m)
Fwd/Rev Sep. RMS for 25%-75% weighting (15708 occurrences):
East: 0.040 (m)
North: 0.046 (m)
Height: 0.071 (m)

Quality Number Percentages:

Q 1: 100.0 %
Q 2: 0.0 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 88.8 %
0.10 - 0.30 m: 11.2 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 0.0 %

Baseline Distances:

Maximum: 53.585 (km)
Minimum: 0.177 (km)
Average: 25.132 (km)
First Epoch: 0.222 (km)
Last Epoch: 0.177 (km)

Program: GrafNav
Version: 6.03
Project: May 11, 2004

Solution Type: Combined Fwd/Rev

Number of Epochs:
- Total in GPB file: 17907
- No processed position: 8955
- Missing Fwd or Rev: 0
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:
- L1 Phase: 0.0243 (m)
- C/A Code: 1.03 (m)
- L1 Doppler: 0.030 (m/s)

Fwd/Rev Separation RMS Values:
- East: 0.014 (m)
- North: 0.039 (m)
Height: 0.026 (m)

Fwd/Rev Sep. RMS for 25%–75% weighting (8947 occurrences):

 East: 0.012 (m)
 North: 0.037 (m)
 Height: 0.026 (m)

Quality Number Percentages:

 Q 1: 99.9 %
 Q 2: 0.1 %
 Q 3: 0.0 %
 Q 4: 0.0 %
 Q 5: 0.0 %
 Q 6: 0.0 %

Position Standard Deviation Percentages:

 0.00 - 0.10 m: 62.6 %
 0.10 - 0.30 m: 37.4 %
 0.30 - 1.00 m: 0.0 %
 1.00 - 5.00 m: 0.0 %
 5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

 DOP over Tol: 9.1 %

Baseline Distances:
Maximum: 83.919 (km)
Minimum: 0.210 (km)
Average: 41.833 (km)
First Epoch: 0.215 (km)
Last Epoch: 0.215 (km)

Program: GrafNav
Version: 6.03
Project: **May 12, 2004**

Solution Type: Combined Fwd/Rev

Number of Epochs:

- Total in GPB file: 23417
- No processed position: 11708
- Missing Fwd or Rev: 1
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:

- L1 Phase: 0.0218 (m)
- C/A Code: 1.14 (m)
- L1 Doppler: 0.036 (m/s)

Fwd/Rev Separation RMS Values:

- East: 0.028 (m)
North: 0.043 (m)
Height: 0.063 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (11701 occurrences):
 East: 0.027 (m)
 North: 0.043 (m)
 Height: 0.062 (m)

Quality Number Percentages:
 Q 1: 99.9 %
 Q 2: 0.1 %
 Q 3: 0.0 %
 Q 4: 0.0 %
 Q 5: 0.0 %
 Q 6: 0.0 %

Position Standard Deviation Percentages:
 0.00 - 0.10 m: 96.8 %
 0.10 - 0.30 m: 3.2 %
 0.30 - 1.00 m: 0.0 %
 1.00 - 5.00 m: 0.0 %
 5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:
DOP over Tol: 8.6 %

Baseline Distances:

- Maximum: 85.994 (km)
- Minimum: 0.202 (km)
- Average: 29.119 (km)
- First Epoch: 0.202 (km)
- Last Epoch: 0.214 (km)

Program: GrafNav
Version: 6.03
Project: May 13, 2004
Solution Type: Combined Fwd/Rev

Number of Epochs:

- Total in GPB file: 22251
- No processed position: 11125
- Missing Fwd or Rev: 1
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:

- L1 Phase: 0.0231 (m)
- C/A Code: 1.11 (m)
- L1 Doppler: 0.038 (m/s)
Fwd/Rev Separation RMS Values:

East: 0.016 (m)
North: 0.042 (m)
Height: 0.061 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (11120 occurrences):

East: 0.015 (m)
North: 0.041 (m)
Height: 0.061 (m)

Quality Number Percentages:

Q 1: 99.9 %
Q 2: 0.1 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 92.7 %
0.10 - 0.30 m: 7.3 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 7.3 %

Baseline Distances:

 Maximum: 45.855 (km)
 Minimum: 0.209 (km)
 Average: 16.264 (km)
 First Epoch: 0.209 (km)
 Last Epoch: 0.226 (km)

Program: GrafNav
Version: 6.03
Project: May 14, 2004

Solution Type: Combined Fwd/Rev

Number of Epochs:

 Total in GPB file: 16662
 No processed position: 8333
 Missing Fwd or Rev: 0
 With bad C/A code: 0
 With bad L1 Phase: 0

Measurement RMS Values:

 L1 Phase: 0.0312 (m)
C/A Code: 1.01 (m)
L1 Doppler: 0.027 (m/s)

Fwd/Rev Separation RMS Values:

East: 0.034 (m)
North: 0.039 (m)
Height: 0.071 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (8326 occurrences):

East: 0.033 (m)
North: 0.028 (m)
Height: 0.066 (m)

Quality Number Percentages:

Q 1: 99.4 %
Q 2: 0.6 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 100.0 %
0.10 - 0.30 m: 0.0 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:
DOP over Tol: 0.0 %

Baseline Distances:
Maximum: 45.848 (km)
Minimum: 0.210 (km)
Average: 25.110 (km)
First Epoch: 0.215 (km)
Last Epoch: 0.214 (km)

Program: GrafNav
Version: 6.03
Project: May 15, 2004

Solution Type: Combined Fwd/Rev

Number of Epochs:
Total in GPB file: 16894
No processed position: 8447
Missing Fwd or Rev: 1
With bad C/A code: 0
With bad L1 Phase: 0
Measurement RMS Values:

- L1 Phase: 0.0236 (m)
- C/A Code: 1.11 (m)
- L1 Doppler: 0.032 (m/s)

Fwd/Rev Separation RMS Values:

- East: 0.027 (m)
- North: 0.020 (m)
- Height: 0.062 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (8442 occurrences):

- East: 0.023 (m)
- North: 0.017 (m)
- Height: 0.059 (m)

Quality Number Percentages:

- Q 1: 99.7 %
- Q 2: 0.3 %
- Q 3: 0.0 %
- Q 4: 0.0 %
- Q 5: 0.0 %
- Q 6: 0.0 %

Position Standard Deviation Percentages:
0.00 - 0.10 m: 84.2 %
0.10 - 0.30 m: 15.8 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

 DOP over Tol: 12.1 %

Baseline Distances:

 Maximum: 68.648 (km)
 Minimum: 0.205 (km)
 Average: 26.703 (km)
 First Epoch: 0.205 (km)
 Last Epoch: 0.227 (km)

Program: GrafNav
Version: 6.03
Project: May 20, 2004

Solution Type: Combined Fwd/Rev

Number of Epochs:

 Total in GPB file: 16710
 No processed position: 8356
 Missing Fwd or Rev: 0
With bad C/A code: 0
With bad L1 Phase: 0

Measurement RMS Values:

<table>
<thead>
<tr>
<th></th>
<th>Value (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Phase</td>
<td>0.0214</td>
</tr>
<tr>
<td>C/A Code</td>
<td>1.15</td>
</tr>
<tr>
<td>L1 Doppler</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Fwd/Rev Separation RMS Values:

<table>
<thead>
<tr>
<th></th>
<th>Value (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>0.030</td>
</tr>
<tr>
<td>North</td>
<td>0.065</td>
</tr>
<tr>
<td>Height</td>
<td>0.109</td>
</tr>
</tbody>
</table>

Fwd/Rev Sep. RMS for 25%-75% weighting (8350 occurrences):

<table>
<thead>
<tr>
<th></th>
<th>Value (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>0.026</td>
</tr>
<tr>
<td>North</td>
<td>0.045</td>
</tr>
<tr>
<td>Height</td>
<td>0.108</td>
</tr>
</tbody>
</table>

Quality Number Percentages:

Q 1	99.8 %
Q 2	0.2 %
Q 3	0.0 %
Q 4	0.0 %
Q 5	0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 72.9 %
0.10 - 0.30 m: 27.1 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 11.0 %

Baseline Distances:

Maximum: 85.692 (km)
Minimum: 0.116 (km)
Average: 36.812 (km)
First Epoch: 0.116 (km)
Last Epoch: 0.258 (km)

Program: GrafNav
Version: 6.03
Project: May 20, 2004 mission 2
Solution Type: Combined Fwd/Rev
Number of Epochs:

Total in GPB file: 11160
No processed position: 5582
Missing Fwd or Rev: 1
With bad C/A code: 0
With bad L1 Phase: 0

Measurement RMS Values:
 L1 Phase: 0.0195 (m)
 C/A Code: 1.21 (m)
 L1 Doppler: 0.027 (m/s)

Fwd/Rev Separation RMS Values:
 East: 0.014 (m)
 North: 0.016 (m)
 Height: 0.040 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (5574 occurrences):
 East: 0.013 (m)
 North: 0.010 (m)
 Height: 0.028 (m)

Quality Number Percentages:
 Q 1: 99.9 %
 Q 2: 0.1 %
 Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

- 0.00 - 0.10 m: 89.4 %
- 0.10 - 0.30 m: 10.6 %
- 0.30 - 1.00 m: 0.0 %
- 1.00 - 5.00 m: 0.0 %
- 5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

- DOP over Tol: 0.0 %

Baseline Distances:

- Maximum: 85.064 (km)
- Minimum: 0.258 (km)
- Average: 25.527 (km)
- First Epoch: 0.258 (km)
- Last Epoch: 0.258 (km)
Number of Epochs:

Total in GPB file: 22613
No processed position: 11306
Missing Fwd or Rev: 0
With bad C/A code: 0
With bad L1 Phase: 0

Measurement RMS Values:

L1 Phase: 0.0243 (m)
C/A Code: 1.05 (m)
L1 Doppler: 0.027 (m/s)

Fwd/Rev Separation RMS Values:

East: 0.011 (m)
North: 0.034 (m)
Height: 0.036 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (11304 occurrences):

East: 0.010 (m)
North: 0.032 (m)
Height: 0.033 (m)

Quality Number Percentages:

Q 1: 99.8 %
Position Standard Deviation Percentages:

- 0.00 - 0.10 m: 99.4 %
- 0.10 - 0.30 m: 0.6 %
- 0.30 - 1.00 m: 0.0 %
- 1.00 - 5.00 m: 0.0 %
- 5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

- DOP over Tol: 0.0 %

Baseline Distances:

- Maximum: 65.523 (km)
- Minimum: 0.150 (km)
- Average: 39.291 (km)
- First Epoch: 0.232 (km)
- Last Epoch: 0.240 (km)
Solution Type: Combined Fwd/Rev

Number of Epochs:

- Total in GPB file: 9509
- No processed position: 4752
- Missing Fwd or Rev: 1
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:

- L1 Phase: 0.0176 (m)
- C/A Code: 0.70 (m)
- L1 Doppler: 0.028 (m/s)

Fwd/Rev Separation RMS Values:

- East: 0.109 (m)
- North: 0.073 (m)
- Height: 0.137 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (3647 occurrences):

- East: 0.019 (m)
- North: 0.012 (m)
- Height: 0.042 (m)

Quality Number Percentages:

- Q 1: 99.9 %
- Q 2: 0.1 %
- Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

<table>
<thead>
<tr>
<th>Range</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 - 0.10 m</td>
<td>91.1 %</td>
</tr>
<tr>
<td>0.10 - 0.30 m</td>
<td>8.9 %</td>
</tr>
<tr>
<td>0.30 - 1.00 m</td>
<td>0.0 %</td>
</tr>
<tr>
<td>1.00 - 5.00 m</td>
<td>0.0 %</td>
</tr>
<tr>
<td>5.00 m + over</td>
<td>0.0 %</td>
</tr>
</tbody>
</table>

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 6.7 %

Baseline Distances:

<table>
<thead>
<tr>
<th>Type</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>54.482 (km)</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.202 (km)</td>
</tr>
<tr>
<td>Average</td>
<td>24.224 (km)</td>
</tr>
<tr>
<td>First Epoch</td>
<td>0.202 (km)</td>
</tr>
<tr>
<td>Last Epoch</td>
<td>0.907 (km)</td>
</tr>
</tbody>
</table>

Program: GrafNav
Version: 6.03
Project: **July 1, 2004 mission 2**

Solution Type: Combined Fwd/Rev

Number of Epochs:
- Total in GPB file: 23698
- No processed position: 11845
- Missing Fwd or Rev: 1
- With bad C/A code: 0
- With bad L1 Phase: 0

Measurement RMS Values:
- L1 Phase: 0.0238 (m)
- C/A Code: 0.64 (m)
- L1 Doppler: 0.026 (m/s)

Fwd/Rev Separation RMS Values:
- East: 0.025 (m)
- North: 0.014 (m)
- Height: 0.050 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (11835 occurrences):
- East: 0.024 (m)
- North: 0.013 (m)
- Height: 0.043 (m)
Quality Number Percentages:

Q 1: 99.7 %
Q 2: 0.3 %
Q 3: 0.0 %
Q 4: 0.0 %
Q 5: 0.0 %
Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 85.4 %
0.10 - 0.30 m: 14.6 %
0.30 - 1.00 m: 0.0 %
1.00 - 5.00 m: 0.0 %
5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 0.0 %

Baseline Distances:

Maximum: 54.686 (km)
Minimum: 0.220 (km)
Average: 26.981 (km)
First Epoch: 0.221 (km)
Last Epoch: 0.243 (km)
Calibration Accuracy

LIDAR, IMU, and GPS data were correlated using GPS time and processed using LIDAR post-processing software to determine the coordinate of each point on the ground. The RAMS LIDAR is able to receive up to three returns from each laser shot fired. This allows receipt of return data from multiple objects as the laser beam travels toward the ground. All returns have been corrected for atmospheric refraction and transmission delays. The resulting three-dimensional coordinates are compiled in an ASCII mass point file of x, y, z on the state plane projection. Initial evaluation of the LIDAR data included the comparison of the data from the flight lines to the survey performed at the calibration site at the respective airport. Five control points were set at various locations near the airport proper. The camera was used for boresighting. These same points were used in boresighting the camera as noted previously. The laser and camera were boresighted each day of flying.
Appendix A

RMSE calculations and iterations

Initial combined RMSE for CT and MA project areas. Total of 50 control points.
<table>
<thead>
<tr>
<th>Control Point</th>
<th>Northing</th>
<th>Easting</th>
<th>Elevation ft</th>
<th>Lidar Elevation ft</th>
<th>Difference ft</th>
<th>Squared</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212</td>
<td>2889844.27</td>
<td>349444.34</td>
<td>90.04</td>
<td>89.14</td>
<td>-0.9008</td>
<td>0.8114</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>2907506.19</td>
<td>355940.69</td>
<td>131.80</td>
<td>130.91</td>
<td>-0.8929</td>
<td>0.7973</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>2907590.20</td>
<td>355930.00</td>
<td>129.29</td>
<td>128.43</td>
<td>-0.8645</td>
<td>0.7474</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>2907399.76</td>
<td>355919.23</td>
<td>129.97</td>
<td>129.32</td>
<td>-0.6488</td>
<td>0.4209</td>
<td></td>
</tr>
<tr>
<td>991203</td>
<td>843031.36</td>
<td>1022706.71</td>
<td>14.35</td>
<td>13.74</td>
<td>-0.610</td>
<td>0.3719</td>
<td></td>
</tr>
<tr>
<td>991303</td>
<td>823283.70</td>
<td>1024837.70</td>
<td>32.60</td>
<td>31.99</td>
<td>-0.607</td>
<td>0.3678</td>
<td></td>
</tr>
<tr>
<td>991001</td>
<td>890331.19</td>
<td>1032210.70</td>
<td>41.21</td>
<td>40.66</td>
<td>-0.549</td>
<td>0.3018</td>
<td></td>
</tr>
<tr>
<td>991101</td>
<td>858662.19</td>
<td>1026428.27</td>
<td>80.27</td>
<td>79.73</td>
<td>-0.543</td>
<td>0.2947</td>
<td></td>
</tr>
<tr>
<td>991301</td>
<td>823144.23</td>
<td>1025288.57</td>
<td>37.42</td>
<td>36.88</td>
<td>-0.540</td>
<td>0.2918</td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>2922735.26</td>
<td>358207.05</td>
<td>114.22</td>
<td>113.69</td>
<td>-0.5334</td>
<td>0.2845</td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td>2889796.90</td>
<td>349778.18</td>
<td>61.78</td>
<td>61.29</td>
<td>-0.4950</td>
<td>0.2450</td>
<td></td>
</tr>
<tr>
<td>1410</td>
<td>2878485.47</td>
<td>352622.68</td>
<td>63.58</td>
<td>63.14</td>
<td>-0.4424</td>
<td>0.1957</td>
<td></td>
</tr>
<tr>
<td>1411</td>
<td>2878454.67</td>
<td>352383.68</td>
<td>61.32</td>
<td>60.89</td>
<td>-0.4340</td>
<td>0.1884</td>
<td></td>
</tr>
<tr>
<td>991703</td>
<td>723794.94</td>
<td>1077845.41</td>
<td>6.83</td>
<td>6.44</td>
<td>-0.392</td>
<td>0.1539</td>
<td></td>
</tr>
<tr>
<td>992001</td>
<td>679192.91</td>
<td>1102663.78</td>
<td>49.74</td>
<td>49.37</td>
<td>-0.369</td>
<td>0.1361</td>
<td></td>
</tr>
<tr>
<td>1510</td>
<td>2873667.35</td>
<td>351690.62</td>
<td>58.44</td>
<td>58.08</td>
<td>-0.3606</td>
<td>0.1300</td>
<td></td>
</tr>
<tr>
<td>991503</td>
<td>780267.51</td>
<td>1037143.02</td>
<td>11.09</td>
<td>10.76</td>
<td>-0.334</td>
<td>0.1118</td>
<td></td>
</tr>
<tr>
<td>991002</td>
<td>890213.50</td>
<td>1032336.72</td>
<td>34.72</td>
<td>34.39</td>
<td>-0.327</td>
<td>0.1066</td>
<td></td>
</tr>
<tr>
<td>1901</td>
<td>2860347.34</td>
<td>360056.54</td>
<td>56.17</td>
<td>55.90</td>
<td>-0.2711</td>
<td>0.0735</td>
<td></td>
</tr>
<tr>
<td>2312</td>
<td>2843143.68</td>
<td>353849.26</td>
<td>54.61</td>
<td>54.35</td>
<td>-0.2594</td>
<td>0.0673</td>
<td></td>
</tr>
<tr>
<td>991801</td>
<td>724741.86</td>
<td>1077808.18</td>
<td>7.45</td>
<td>7.25</td>
<td>-0.201</td>
<td>0.0406</td>
<td></td>
</tr>
<tr>
<td>991102</td>
<td>858690.04</td>
<td>1026254.50</td>
<td>91.28</td>
<td>91.09</td>
<td>-0.194</td>
<td>0.0375</td>
<td></td>
</tr>
<tr>
<td>991701</td>
<td>724406.02</td>
<td>1077884.17</td>
<td>6.62</td>
<td>6.44</td>
<td>-0.185</td>
<td>0.0342</td>
<td></td>
</tr>
<tr>
<td>991901</td>
<td>705016.67</td>
<td>1088699.31</td>
<td>6.87</td>
<td>6.69</td>
<td>-0.183</td>
<td>0.0335</td>
<td></td>
</tr>
<tr>
<td>991902</td>
<td>705068.86</td>
<td>1088633.19</td>
<td>8.20</td>
<td>8.03</td>
<td>-0.170</td>
<td>0.0288</td>
<td></td>
</tr>
<tr>
<td>991501</td>
<td>780391.10</td>
<td>1037799.46</td>
<td>9.55</td>
<td>9.42</td>
<td>-0.134</td>
<td>0.0180</td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>2922545.56</td>
<td>357718.01</td>
<td>114.56</td>
<td>114.43</td>
<td>-0.1329</td>
<td>0.0177</td>
<td></td>
</tr>
<tr>
<td>991201</td>
<td>843260.16</td>
<td>1022612.29</td>
<td>13.84</td>
<td>13.75</td>
<td>-0.087</td>
<td>0.0076</td>
<td></td>
</tr>
<tr>
<td>1911</td>
<td>2860375.75</td>
<td>359979.18</td>
<td>55.17</td>
<td>55.09</td>
<td>-0.0800</td>
<td>0.0064</td>
<td></td>
</tr>
<tr>
<td>991202</td>
<td>843674.95</td>
<td>1022801.07</td>
<td>14.17</td>
<td>14.14</td>
<td>-0.029</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td>991708</td>
<td>762773.11</td>
<td>1045930.72</td>
<td>47.83</td>
<td>47.86</td>
<td>0.028</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td>1513</td>
<td>2874682.92</td>
<td>352244.35</td>
<td>57.30</td>
<td>57.34</td>
<td>0.0353</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>991003</td>
<td>890024.69</td>
<td>1032365.69</td>
<td>31.96</td>
<td>32.02</td>
<td>0.061</td>
<td>0.0037</td>
<td></td>
</tr>
<tr>
<td>991302</td>
<td>823178.80</td>
<td>1025130.46</td>
<td>33.90</td>
<td>34.04</td>
<td>0.137</td>
<td>0.0189</td>
<td></td>
</tr>
<tr>
<td>2310</td>
<td>2843124.11</td>
<td>354245.87</td>
<td>52.05</td>
<td>52.21</td>
<td>0.1639</td>
<td>0.0269</td>
<td></td>
</tr>
<tr>
<td>992002</td>
<td>679126.06</td>
<td>1102733.37</td>
<td>50.04</td>
<td>50.27</td>
<td>0.226</td>
<td>0.0513</td>
<td></td>
</tr>
<tr>
<td>991803</td>
<td>724913.67</td>
<td>1078037.37</td>
<td>6.62</td>
<td>6.88</td>
<td>0.258</td>
<td>0.0664</td>
<td></td>
</tr>
<tr>
<td>991103</td>
<td>858472.69</td>
<td>1026281.67</td>
<td>84.87</td>
<td>83.48</td>
<td>-1.390</td>
<td>1.9324</td>
<td>Point is in trees</td>
</tr>
<tr>
<td>148</td>
<td>2922733.15</td>
<td>357979.29</td>
<td>106.93</td>
<td>107.96</td>
<td>1.0253</td>
<td>1.0512</td>
<td>Point on grassy surface/possible survey</td>
</tr>
<tr>
<td>991709</td>
<td>762800.68</td>
<td>1045802.84</td>
<td>52.90</td>
<td>53.19</td>
<td>0.289</td>
<td>0.0836</td>
<td></td>
</tr>
<tr>
<td>991702</td>
<td>723976.37</td>
<td>1077964.00</td>
<td>6.82</td>
<td>7.12</td>
<td>0.303</td>
<td>0.0916</td>
<td></td>
</tr>
<tr>
<td>991502</td>
<td>780373.10</td>
<td>1037466.12</td>
<td>10.34</td>
<td>10.65</td>
<td>0.307</td>
<td>0.0943</td>
<td></td>
</tr>
</tbody>
</table>
Control Point Information

<table>
<thead>
<tr>
<th>Control Point</th>
<th>Northing</th>
<th>Easting</th>
<th>Elevation ft</th>
<th>Lidar Elevation ft</th>
<th>Difference ft</th>
<th>Squared</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2922765.19</td>
<td>358220.92</td>
<td>111.90</td>
<td>112.23</td>
<td>0.3254</td>
<td>0.1059</td>
<td></td>
</tr>
<tr>
<td>1401</td>
<td>2878012.96</td>
<td>352936.05</td>
<td>59.23</td>
<td>59.63</td>
<td>0.3960</td>
<td>0.1568</td>
<td></td>
</tr>
<tr>
<td>991802</td>
<td>724459.56</td>
<td>1078091.47</td>
<td>6.82</td>
<td>7.22</td>
<td>0.397</td>
<td>0.1575</td>
<td></td>
</tr>
<tr>
<td>2311</td>
<td>2843012.29</td>
<td>354249.40</td>
<td>60.03</td>
<td>58.81</td>
<td>-1.2237</td>
<td>1.4974</td>
<td>Point is in trees, low pt density in the area</td>
</tr>
<tr>
<td>1512</td>
<td>2873559.02</td>
<td>351180.61</td>
<td>55.75</td>
<td>57.08</td>
<td>1.3303</td>
<td>1.7697</td>
<td>Point is in trees, low pt density in the area</td>
</tr>
<tr>
<td>1211</td>
<td>2889870.91</td>
<td>349877.42</td>
<td>62.56</td>
<td>62.97</td>
<td>0.4108</td>
<td>0.1688</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>2907654.32</td>
<td>355896.98</td>
<td>123.57</td>
<td>124.46</td>
<td>0.8903</td>
<td>0.7926</td>
<td></td>
</tr>
</tbody>
</table>

Total

-8.04 14.4510

Avg. Error

-0.16 0.2890

Points / RMSE

50.00 0.5376

Points removed

- 2311 2843012.29 354249.40 60.03 58.81 -1.2237 1.4974 Point is in trees, low pt density in the area
- 1512 2873559.02 351180.61 55.75 57.08 1.3303 1.7697 Point is in trees, low pt density in the area

Checkpoints removed due to not being located inside the project area:

<table>
<thead>
<tr>
<th>Checkpoint</th>
<th>Northing</th>
<th>Easting</th>
<th>Elevation</th>
<th>Lidar Elevation</th>
<th>Difference</th>
<th>Squared</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>99801</td>
<td>920980.34</td>
<td>1036880.16</td>
<td>123.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99802</td>
<td>921137.91</td>
<td>1036763.42</td>
<td>124.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99803</td>
<td>921236.96</td>
<td>1036878.03</td>
<td>127.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99901</td>
<td>911423.01</td>
<td>1034876.33</td>
<td>102.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99902</td>
<td>911581.69</td>
<td>1034848.27</td>
<td>100.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99903</td>
<td>911680.95</td>
<td>1034728.85</td>
<td>102.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>991401</td>
<td>797455.98</td>
<td>1029671.24</td>
<td>146.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>991402</td>
<td>797470.87</td>
<td>1029824.34</td>
<td>147.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>991403</td>
<td>797407.96</td>
<td>1029567.46</td>
<td>137.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>991601</td>
<td>761108.90</td>
<td>1033115.02</td>
<td>172.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>991602</td>
<td>761123.53</td>
<td>1032826.63</td>
<td>168.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>991603</td>
<td>761018.00</td>
<td>1032818.44</td>
<td>167.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Points 99801, 99802, 99803 located outside of the delivered blue project area
Points 99901, 99902, 99903 located outside of the delivered blue project area

Points 991401, 991402, 991403 located outside of the delivered blue project area

Points 991601, 991602, 991603 located outside of the delivered blue project area
3 Points were removed due to being outliers (3-sigma level)

An excerpt from the FEMA Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix A section A.8.3.1.

"Outliers often occur as a result of the failure to achieve a true bare-earth surface from the vegetation removal process. A single outlier can override dozens or hundreds of accurate checkpoints, making the entire RMSE value appear to be poor. To deal with outliers, a criterion may be established to remove a small percentage of the total number of checkpoints surveyed that exhibit the largest discrepancies. Statisticians almost unanimously agree that errors exceeding the "3-sigma" level are outliers; the "3-sigma" level provides confidence at the 99.75 percent confidence level, enabling only the worst 0.25 percent of a dataset to be discarded as outliers."

<table>
<thead>
<tr>
<th>Point</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Xe</th>
<th>Ye</th>
<th>Ze</th>
</tr>
</thead>
<tbody>
<tr>
<td>991903</td>
<td>705093.71</td>
<td>1088575.15</td>
<td>10.50</td>
<td>4.35</td>
<td>-6.1454</td>
<td>37.76594</td>
</tr>
<tr>
<td>992003</td>
<td>679325.32</td>
<td>1102800.50</td>
<td>44.94</td>
<td>50.17</td>
<td>5.2255</td>
<td>27.30586</td>
</tr>
<tr>
<td>226</td>
<td>2907595.29</td>
<td>355865.69</td>
<td>124.46</td>
<td>121.01</td>
<td>-3.4518</td>
<td>11.914923</td>
</tr>
</tbody>
</table>

5 Points removed due to point location

<table>
<thead>
<tr>
<th>Point</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Xe</th>
<th>Ye</th>
<th>Ze</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>2907503.75</td>
<td>355892.66</td>
<td>131.16</td>
<td>130.12</td>
<td>-1.0367</td>
<td>1.0747</td>
</tr>
<tr>
<td>126</td>
<td>2922898.14</td>
<td>358246.29</td>
<td>105.95</td>
<td>107.19</td>
<td>1.2356</td>
<td>1.5267</td>
</tr>
<tr>
<td>161</td>
<td>2922391.82</td>
<td>357471.12</td>
<td>108.77</td>
<td>107.23</td>
<td>-1.5365</td>
<td>2.3608</td>
</tr>
<tr>
<td>2311</td>
<td>2843012.29</td>
<td>354249.40</td>
<td>60.03</td>
<td>58.81</td>
<td>-1.2237</td>
<td>1.4974</td>
</tr>
<tr>
<td>1512</td>
<td>2873559.02</td>
<td>351180.61</td>
<td>55.75</td>
<td>57.08</td>
<td>1.3303</td>
<td>1.7697</td>
</tr>
</tbody>
</table>

Point 126
This point is within 5 meters of a (breakline) sharp slope into the water. Points need to be clear of all breaklines in a 5-meter radius.
Point 200
This point is classified as pavement but is within 5 meters of a large tree. Points need to be unobstructed in a 5-meter radius.

Point 161
Was removed due to point location. The point is within 5 meters of a fairly steep drop off to the water.

Point 2311 – total leaf coverage, minimal point density
Point 1512 – total leaf coverage, minimal point density
Final RMSE for combined areas.

RMSE: .482 feet

<table>
<thead>
<tr>
<th>Control Point</th>
<th>Northing</th>
<th>Easting</th>
<th>Elevation ft</th>
<th>Lidar Elevation ft</th>
<th>Difference ft</th>
<th>Squared</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212</td>
<td>2889844.27</td>
<td>349444.34</td>
<td>90.04</td>
<td>89.14</td>
<td>-0.9008</td>
<td>0.8114</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>2907506.19</td>
<td>355940.69</td>
<td>131.80</td>
<td>130.91</td>
<td>-0.8929</td>
<td>0.7973</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>2907590.20</td>
<td>355930.00</td>
<td>129.29</td>
<td>128.43</td>
<td>-0.8645</td>
<td>0.7474</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>2907399.76</td>
<td>355919.23</td>
<td>129.97</td>
<td>129.32</td>
<td>-0.6488</td>
<td>0.4209</td>
<td></td>
</tr>
<tr>
<td>991203</td>
<td>843031.36</td>
<td>1027206.71</td>
<td>14.35</td>
<td>13.74</td>
<td>-0.610</td>
<td>0.3719</td>
<td></td>
</tr>
<tr>
<td>991303</td>
<td>823283.70</td>
<td>1024837.70</td>
<td>32.60</td>
<td>31.99</td>
<td>-0.607</td>
<td>0.3678</td>
<td></td>
</tr>
<tr>
<td>991001</td>
<td>890331.19</td>
<td>1032210.70</td>
<td>41.21</td>
<td>40.66</td>
<td>-0.549</td>
<td>0.3018</td>
<td></td>
</tr>
<tr>
<td>991101</td>
<td>858662.19</td>
<td>1026428.27</td>
<td>80.27</td>
<td>79.73</td>
<td>-0.543</td>
<td>0.2947</td>
<td></td>
</tr>
<tr>
<td>991301</td>
<td>823144.23</td>
<td>1025288.57</td>
<td>37.42</td>
<td>36.88</td>
<td>-0.540</td>
<td>0.2918</td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>2922735.26</td>
<td>358207.05</td>
<td>114.22</td>
<td>113.69</td>
<td>-0.5334</td>
<td>0.2845</td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td>2889796.90</td>
<td>349778.18</td>
<td>61.78</td>
<td>61.29</td>
<td>-0.4950</td>
<td>0.2450</td>
<td></td>
</tr>
<tr>
<td>1410</td>
<td>2878485.47</td>
<td>352622.68</td>
<td>63.58</td>
<td>63.14</td>
<td>-0.4424</td>
<td>0.1957</td>
<td></td>
</tr>
<tr>
<td>1411</td>
<td>2878454.67</td>
<td>352383.68</td>
<td>61.32</td>
<td>60.89</td>
<td>-0.4340</td>
<td>0.1884</td>
<td></td>
</tr>
<tr>
<td>991703</td>
<td>723794.54</td>
<td>1077845.41</td>
<td>6.83</td>
<td>6.44</td>
<td>-0.392</td>
<td>0.1539</td>
<td></td>
</tr>
<tr>
<td>992001</td>
<td>679192.91</td>
<td>1102663.78</td>
<td>49.74</td>
<td>49.37</td>
<td>-0.369</td>
<td>0.1361</td>
<td></td>
</tr>
<tr>
<td>1510</td>
<td>2873667.35</td>
<td>351690.62</td>
<td>58.44</td>
<td>58.08</td>
<td>-0.3606</td>
<td>0.1300</td>
<td></td>
</tr>
<tr>
<td>991503</td>
<td>780267.51</td>
<td>1037143.02</td>
<td>11.09</td>
<td>10.76</td>
<td>-0.334</td>
<td>0.1118</td>
<td></td>
</tr>
<tr>
<td>991002</td>
<td>890213.50</td>
<td>1032336.72</td>
<td>34.72</td>
<td>34.39</td>
<td>-0.327</td>
<td>0.1066</td>
<td></td>
</tr>
<tr>
<td>1901</td>
<td>2860347.34</td>
<td>360506.54</td>
<td>56.17</td>
<td>55.90</td>
<td>-0.2711</td>
<td>0.0735</td>
<td></td>
</tr>
<tr>
<td>2312</td>
<td>2843143.68</td>
<td>353849.26</td>
<td>54.61</td>
<td>54.35</td>
<td>-0.2594</td>
<td>0.0673</td>
<td></td>
</tr>
<tr>
<td>1910</td>
<td>2860599.98</td>
<td>360111.33</td>
<td>47.56</td>
<td>47.32</td>
<td>-0.2394</td>
<td>0.0573</td>
<td></td>
</tr>
<tr>
<td>991801</td>
<td>724741.86</td>
<td>1077808.18</td>
<td>7.45</td>
<td>7.25</td>
<td>-0.201</td>
<td>0.0406</td>
<td></td>
</tr>
<tr>
<td>991102</td>
<td>858560.04</td>
<td>1026254.50</td>
<td>91.28</td>
<td>91.09</td>
<td>-0.194</td>
<td>0.0375</td>
<td></td>
</tr>
<tr>
<td>991701</td>
<td>724406.02</td>
<td>1077884.17</td>
<td>6.62</td>
<td>6.44</td>
<td>-0.185</td>
<td>0.0342</td>
<td></td>
</tr>
<tr>
<td>991901</td>
<td>705016.67</td>
<td>1088699.31</td>
<td>6.87</td>
<td>6.69</td>
<td>-0.183</td>
<td>0.0335</td>
<td></td>
</tr>
<tr>
<td>991902</td>
<td>705068.86</td>
<td>1088633.19</td>
<td>8.20</td>
<td>8.03</td>
<td>-0.170</td>
<td>0.0288</td>
<td></td>
</tr>
<tr>
<td>991501</td>
<td>780391.10</td>
<td>1037799.46</td>
<td>9.55</td>
<td>9.42</td>
<td>-0.134</td>
<td>0.0180</td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>2922545.56</td>
<td>357718.01</td>
<td>118.93</td>
<td>118.43</td>
<td>-0.500</td>
<td>0.2500</td>
<td></td>
</tr>
<tr>
<td>991201</td>
<td>843260.16</td>
<td>1022612.29</td>
<td>13.84</td>
<td>13.75</td>
<td>-0.087</td>
<td>0.0076</td>
<td></td>
</tr>
<tr>
<td>1911</td>
<td>2860375.75</td>
<td>359979.18</td>
<td>55.17</td>
<td>55.09</td>
<td>-0.0800</td>
<td>0.0064</td>
<td></td>
</tr>
<tr>
<td>991202</td>
<td>843674.95</td>
<td>1022801.07</td>
<td>14.17</td>
<td>14.14</td>
<td>-0.029</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td>991708</td>
<td>762773.11</td>
<td>1045930.72</td>
<td>47.83</td>
<td>47.86</td>
<td>0.028</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td>1513</td>
<td>2874682.92</td>
<td>352244.35</td>
<td>57.30</td>
<td>57.34</td>
<td>0.0353</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>991003</td>
<td>890024.69</td>
<td>1032365.69</td>
<td>31.96</td>
<td>32.02</td>
<td>0.061</td>
<td>0.0037</td>
<td></td>
</tr>
<tr>
<td>991302</td>
<td>823178.80</td>
<td>1025130.46</td>
<td>33.90</td>
<td>34.04</td>
<td>0.137</td>
<td>0.0189</td>
<td></td>
</tr>
<tr>
<td>2310</td>
<td>2843124.11</td>
<td>354245.87</td>
<td>52.05</td>
<td>52.21</td>
<td>0.1639</td>
<td>0.0269</td>
<td></td>
</tr>
<tr>
<td>992002</td>
<td>679126.06</td>
<td>1102733.37</td>
<td>50.04</td>
<td>50.27</td>
<td>0.226</td>
<td>0.0513</td>
<td></td>
</tr>
<tr>
<td>991803</td>
<td>724913.67</td>
<td>1078037.37</td>
<td>6.62</td>
<td>6.88</td>
<td>0.258</td>
<td>0.0664</td>
<td></td>
</tr>
<tr>
<td>991103</td>
<td>858472.69</td>
<td>1026281.67</td>
<td>84.87</td>
<td>83.48</td>
<td>-1.390</td>
<td>1.9324</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>2922733.15</td>
<td>357979.29</td>
<td>106.93</td>
<td>107.96</td>
<td>1.0253</td>
<td>1.0512</td>
<td></td>
</tr>
<tr>
<td>991709</td>
<td>762800.68</td>
<td>1045802.84</td>
<td>52.90</td>
<td>53.19</td>
<td>0.289</td>
<td>0.0836</td>
<td></td>
</tr>
<tr>
<td>Control Point</td>
<td>Northing</td>
<td>Easting</td>
<td>Elevation ft</td>
<td>Lidar Elevation ft</td>
<td>Difference ft</td>
<td>Squared</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>991702</td>
<td>723976.37</td>
<td>1077964.00</td>
<td>6.82</td>
<td>7.12</td>
<td>0.303</td>
<td>0.0916</td>
<td></td>
</tr>
<tr>
<td>991502</td>
<td>780373.10</td>
<td>1037466.12</td>
<td>10.34</td>
<td>10.65</td>
<td>0.307</td>
<td>0.0943</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2922765.19</td>
<td>358220.92</td>
<td>111.90</td>
<td>112.23</td>
<td>0.3254</td>
<td>0.1059</td>
<td></td>
</tr>
<tr>
<td>1401</td>
<td>2878012.96</td>
<td>352935.05</td>
<td>59.23</td>
<td>59.63</td>
<td>0.3960</td>
<td>0.1568</td>
<td></td>
</tr>
<tr>
<td>991802</td>
<td>724459.56</td>
<td>1078091.47</td>
<td>6.82</td>
<td>7.22</td>
<td>0.397</td>
<td>0.1575</td>
<td></td>
</tr>
<tr>
<td>1211</td>
<td>2889870.91</td>
<td>349877.42</td>
<td>62.56</td>
<td>62.97</td>
<td>0.4108</td>
<td>0.1688</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>2907654.32</td>
<td>355896.98</td>
<td>123.57</td>
<td>124.46</td>
<td>0.8903</td>
<td>0.7926</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>-8.15</td>
<td></td>
<td>11.1838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. Error</td>
<td></td>
<td></td>
<td>-0.17</td>
<td></td>
<td>0.2330</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Points / RMSE</td>
<td></td>
<td></td>
<td>48.00</td>
<td></td>
<td>0.4827</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Survey Report
Point locations of check point survey provided by Green International Affiliates, Inc.

Connecticut

SITE 8

POINT S8_WOD

POINT S8_VC1_PAV
SITE 9

Point S9VC1_PAV
Point S9VC2_GRA

Point S9WOD
SITE 10

Point S10_CKWOD

Point S10_VC1_PAV
POINT S11_VC1_PAV

POINT S11_VC2_GRA
SITE 12

POINT S12_CKWOD

POINT S12_VC1_PAV
SITE 13

POINT S12_VC2_GRA

POINT S13_CKWOD
SITE 14

POINT S14_CKWOD

POINT S14_VC1_PAV
SITE 15

POINT S14_VC2_GRA

POINT S15_CKWOD
POINT S15_VC1_PAV

POINT S15_VC2_GRA
SITE 16

POINT S16_CKWOD

POINT S16_VC1_PAV
SITE 17

POINT S17_CKWOD
POINT S17_CKPAV

POINT S17_CKGRA
SITE 18

POINT S18_CKWOD

POINT S18_VC1_PAV
SITE 19

POINT S18_VC2_GRA

POINT S19_CKWOD
SITE 20

POINT S20_CKWOD

POINT S20_VC1_PAV
MASS POINTS

SITE 5

POINT S5_CKWOD

POINT S5_PAV
POINT S5_GRA

SITE 7

POINT S7_CKWOD
POINT S7_VC1_PAV

POINT S7_VC2_GRA
SITE 12

POINT S12_CKWOD

POINT S12_PAV
SITE 14

POINT S12_GRA

POINT S14_WOD
POINT S14_PAV

POINT S14_GRA
SITE 15

POINT S15_WOD

POINT S15_PAV
SITE 19

POINT S15_GRA

POINT S19_WOD
POINT S19_PAV

POINT S19_VC1 (GRA)
SITE 23

POINT S23_WOD

POINT S23_PAV