QUALITY

At Woolpert, quality is the cornerstone of our business. We invite your comments and suggestions for improving this document.

TRADEMARKS

All brand names and product names are trademarks or registered trademarks of their respective companies.

NOTICE OF PROPRIETARY INFORMATION

© 2009, Woolpert, Orlando, Florida.

All rights reserved to Woolpert.

This document was designed, prepared, and submitted by Woolpert to be used only by the recipient.

None of this material is permitted to be reproduced in any way or distributed to anyone other than the authorized representatives of the recipient.
MINIMUM TECHNICAL STANDARDS REPORT
REPORT OF TOPOGRAPHIC SURVEY

Task Order C: 20070525-492718c
Contract No. 07-HS-34-14-00-22-469

PASCO COUNTY COASTAL TILES

For:
State of Florida, Division of Emergency Management
“State Emergency Response Team”
2555 Shumard Oak Boulevard
Tallahassee, Florida 32399-2100

By:
WOOLPERT, Inc.
Laurel Building
3504 Lake Lynda Drive, Suite 400
Orlando, FL 32817-1484
Tel 407.381.2192 / Fax 407.384.1185
Florida Certificate of Authorization LB 6777

Prepared by:
Richard R. Hudson, PE, PSM
Florida Professional Surveyor and Mapper PSM 5473

SUMMARY OF CONTENTS

Purpose .. 1
Type of Survey .. 1
Sensor Description ... 1
Dates of Survey ... 1
Survey Area .. 2
Map Reference ... 2
Name of Responsible Surveyor ... 2
Name of Company .. 2
Abbreviations .. 2
Definitions ... 3
Map Data Accuracy .. 3
Datums/Coordinate Systems .. 4
Data Sources .. 4
Methodology ... 4
 LiDAR Ground Control Survey .. 5
 QA/QC Checkpoint Survey ... 5
 LiDAR Acquisition and Processing .. 5
 LiDAR QC/Photogrammetric Compilation ... 6
Accuracy Checks .. 7
References ... 7
General Notes ... 7

Appendix A: Mapping Area and QC Checkpoint Locations
Appendix B: LiDAR Accuracy Checks
Appendix C: LAS Files Delivered
Appendix D: LiDAR Calibration
Appendix E: LiDAR Flight Dates
REPORT OF TOPOGRAPHIC SURVEY
PASCO COUNTY COASTAL TILES: LIDAR
TOPOGRAPHIC MAPPING
FOR THE
FLORIDA DIVISION OF EMERGENCY MANAGEMENT

Purpose

This data set is one component of a digital terrain model (DTM) for the Florida Division of Emergency Management's (FDEM) Project Management and Technical Services for Mapping within Coastal Florida (Contract 07-HS-34-14-00-22-469), encompassing the entire coastline of Florida.

This survey was performed according to Baseline Specifications v 1.2. These specifications were developed by a coalition of GIS practitioners, including the Florida Division of Emergency Management, Florida Water Management Districts, Florida Fish and Wildlife Conservation Commission, Florida Department of Environmental Protection, Army Corp of Engineers Jacksonville District, and other state and federal agencies as the model requirements for orthophotography and LiDAR data collection for publicly funded projects within Florida.

The LiDAR topographic mapping survey is to support the Florida Division of Emergency Management (FDEM) development and maintenance of Regional Evacuation Studies (Study), which include vulnerability assessments and assist disaster response personnel in understanding threats to Florida’s citizens and visitors. Additionally-intended uses for this survey are growth management, map modernization/floodplain mapping, natural lands stewardship, and homeland security planning.

Type of Survey

Topographic Survey – Line-Drawn (Vector) Topographic Features by LiDAR and Photogrammetric Methods.

Sensor Description

All data was acquired using Leica ALS50-II LiDAR sensor number 59. The ALS50 has a laser pulse rate of up to 150 kilohertz, records up to 4 returns per pulse, and records return intensities for 3 laser returns per pulse. The Pasco County Coastal Tiles LiDAR data was collected at 4,000' above ground level, at an average airspeed of 110 knots. Sensor Field of View was set to 29 degrees. Bore-sight calibration was performed at the beginning and at the end of the overall project. A description of that calibration may be found in Appendix D.

Dates of Survey

The LiDAR data was acquired February 9, 2008. A map of the LiDAR flight lines and the dates of those flights may be found in Appendix E. The GPS ground control and QA/QC observations occurred on May 27, 2008.
Survey Area

The survey encompassed approximately +/-30 square miles within Pasco County, Florida.

Map Reference

There are no printed maps for this survey. All map data was delivered to the Florida Division of Emergency Management in digital form only.

Name of Responsible Surveyor

Richard R. Hudson, PE, PSM
Woolpert, Inc.
Laurel Building
3504 Lake Lynda Drive
Suite 400
Orlando, Florida 32817-1484
Professional Surveyor and Mapper Number LS-0005473

Name of Company

Woolpert, Inc.
Laurel Building
3504 Lake Lynda Drive
Suite 400
Orlando, Florida 32817-1484
Florida Certificate of Authorization No. LB-0006777

Abbreviations

2D – Two-Dimensional
3D – Three-Dimensional
ABGPS – Airborne GPS
AGL – Above Ground Level
AT – Aerial Triangulation
CI – Confidence Interval
DEM – Digital Elevation Model
DTM – Digital Terrain Model
FDEM – Florida Division or Emergency Management
FGCC – Federal Geodetic Control Committee
GeoTIFF – Georeferenced Tag(ged) Image File Format
GPS – Global Positioning System
GSD – Ground Sample Distance
ID – Identification
IMU – Inertial Measurement Unit
Inc. – Incorporated
IPAS – Inertial Positioning and Attitude System
LAS – LASer File Format Exchange
LiDAR – Light Detection And Ranging
NAVD 88 – North American Vertical Datum of 1988
NGS – National Geodetic Survey
NMAS – National Map Accuracy Standards
NOAA – National Oceanic and Atmospheric Administration
NSSDA – National Standards for Spatial Data Accuracy
PSM – Professional Surveyor and Mapper
QA/QC – Quality Assurance/Quality Control
RGB – Red, Green and Blue Bands
RMSE – Root Mean Square Error
RTK – Real Time Kinematic
STD – Standard
TIFF – Tag(ged) Image File Format
TIN – Triangulated Irregular Network
USGS – United States Geological Survey
Vx – Residual Horizontal Error in the X Direction
Vy – Residual Horizontal Error in the Y Direction
Vxy – Residual Horizontal Error in the XY Direction (Resultant)
XYZ – Easting, Northing and elevation grid coordinates (ASCII format)

Definitions

Orthophoto: A digital image (raster) map produced from a series of aerial photographs and/or image strips that have been rectified to correct for aircraft tilt, terrain relief, and camera lens distortion. The resulting image has a consistent scale throughout, allowing the user to take direct measurements such as distances, angles, positions, and areas. The digital raster image is comprised of a digital grid of pixels, or picture elements. Each pixel has a row and column “address” (an X,Y coordinate) and an intensity value ranging from 0 to 255. Each pixel within an RGB image, will have an intensity value for the red, green, and blue bands. Orthophotos may be produced as a natural color image using natural color bands (red, green, blue) or as a false-color infrared image using the red, green, near-infrared bands.

Map Data Accuracy

Horizontal Feature Accuracy: Per contract specifications, the horizontal accuracy requirement is to meet or exceed a 3.8-foot horizontal accuracy at the 95% confidence level using RMSE(r) x 1.7308 as defined by the FGDC Geospatial Positioning Accuracy Standards, Part 3: NSSDA.

Vertical Feature Accuracy: Per contract specifications, the vertical accuracy requirement of the digital terrain model (DTM) is 0.6 foot at 95% confidence level using RMSE(z) x 1.9600 as defined by the National Standard for Spatial Data Accuracy (NSSDA).

For the following landcover point classifications,

1. Bare-earth and low grass
2. Brush lands and low trees
3. Forested areas fully covered by trees
4. Urban areas
Vertical accuracy guidelines are as follows from FEMA’s Appendix A:

In category 1, the RMSEz must be < .30 ft (Accuracyz < .60 feet)
In category 2, the RMSEz should be < .61 ft (Accuracyz < 1.19 feet)
In category 3, the RMSEz should be < .61 ft (Accuracyz < 1.19 feet)
In category 4, the RMSEz should be < .61 ft (Accuracyz < 1.19 feet)
In all categories combined, the RMSEz should be < .61 ft (Accuracyz < 1.19 feet)

Additionally, two-foot contours in unobscured areas are certified to meet or exceed National Map Accuracy Standards (NMAS). These standards state that not more than 10 percent of the elevations tested shall be in error by more than one-half the contour interval, and none will be in error by more than the full contour interval. Therefore, for a 2-foot contour interval, not more than 10 percent of the elevations tested shall be in error of more than 1 foot, and none will be in error by more that 2 feet. Two-foot contours within low confidence (obscured) areas are attributed as such and are not required to meet NMAS. Additionally, 1-foot contours are delivered for graphical purposes, and are not required to meet these accuracy standards.

The accuracy assessment was performed using a standard method to compute the root mean square error (RMSE) based on a comparison of ground control points and filtered LiDAR data points. Filtered LiDAR data has had vegetation and cultural features removed and by analysis represents bare earth elevations. The RMSE figure was used to compute the vertical National Standard for Spatial Data Accuracy (NSSDA).

The results of Woolpert’s accuracy analysis are included in Appendix B, LiDAR Accuracy Checks.

Datums/Coordinate Systems

The LiDAR data and breaklines are in reference to the State Plane Coordinate System, Florida West Zone (0902), in units of US Survey Feet. The horizontal datum is NAD83-HARN, and the vertical datum is NAVD88.

Data Sources

Original Control Point Coordinates: NGS Information Services
NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282
Phone: (301) 713-3242 Fax: (301) 713-4172
Email: info_center@ngs.noaa.gov
http://www.ngs.noaa.gov/

Methodology

A digital terrain model (DTM) was developed from a combination of newly-flown LiDAR point data and existing orthophoto imagery. Stereo imagery was created from the LiDAR surface and orthophoto imagery using GeoCue software, generating the stereo view from the 3D LiDAR data. Terrain breakline data was photogrammetrically collected to improve the digital elevation model within this stereo view.
The Pasco County Coastal Tiles encompasses approximately 30 square miles within Pasco County, Florida (see Appendix A: Mapping Area and QC Checkpoint Locations). The LiDAR data was collected at a maximum post spacing of 4 feet in unobscured areas for random point data. The end product complies with the Florida Administrative Code 61G17, Minimum Technical Standards for Surveying and Mapping.

A minimum of one hundred and twenty (120) ground survey quality control (QC) checkpoints are required for per 500 square miles of project area. These were surveyed by Woolpert throughout the project area and were used to confirm the accuracy of the LiDAR data. The accuracy analysis was based on methods outlined in the Geospatial Positioning Accuracy Standards, Part 3: National Standards for Spatial Data Accuracy (NSSDA) developed by the Federal Geodetic Data Committee (FGDC-STD-007.3-1998).

LiDAR Ground Control Survey

The ground control network to support the LiDAR survey was comprised of 10 control points located by rapid static GPS methods to second-order horizontal and third-order vertical accuracies in the Pasco County Coastal Tiles. For a detailed overview of the ground control survey, refer to Volume 1 of this report.

QA/QC Checkpoint Survey

To support the accuracy analysis of the topographic mapping, Woolpert acquired 19 new field-surveyed QC checkpoints using rapid static GPS ground surveys, along with conventional surveying methods to locate points within dense tree cover. Again, a detailed overview of the QA/QC checkpoint survey may be found in Volume 1 of this report.

LiDAR Acquisition and Processing

The LiDAR data was acquired using Leica ALS50-II LiDAR sensors, on February 9, 2008. The LiDAR data was collected at a maximum post spacing of 4 feet in unobscured areas for random point data. ABGPS base stations used during acquisition were HERNPORT and CLEARPORT.

The ABGPS data was reduced using the GrafNav software package by Waypoint Consulting, Incorporated.

The IMU data for Sensor 59 was reduced using Leica’s IPAS Pro software to process the IMU data, with Leica’s IPAS sensor embedded.

The initial LiDAR “point cloud” was derived through the ALS Post Processor software package by Leica Geosystems. The ground base stations were placed at no more than a 20-mile radius from the flight survey area.

Once the initial LiDAR “point cloud” was derived, the data was reviewed to look for any systematic error within the LiDAR flights using proprietary software. After systematic error was identified and removed, above-ground features were classified and removed using proprietary software to produce the bare-earth coverage. The overlap area between flight lines was maintained in order that potentially usable data is available.
LiDAR QC/Photogrammetric Compilation

To collect the breaklines, the LiDAR data was used as the main source data set in addition to orthophotography. Orthophoto imagery was provided by FDEM. All imagery for the Pasco County Coastal Tiles is dated 2007 with a 1-foot pixel resolution.

Stereo imagery was created from the LiDAR surface and orthophoto imagery using GeoCue software. From these stereo images, or LiDARgrammetry, breakline features were collected along linear topographic features as required. Breakline elevations were linearly ramped between identified critical elevation points.

In accordance with the Baseline Specifications v 1.2, the following breakline features were collected:

- Closed water bodies (lakes, reservoirs, etc) as 2-D or 3-D polygons
- Linear hydrographic features (streams, shorelines, canals, swales, embankments, etc) as 3-D breaklines
- Coastal shorelines as 2-D or 3-D linear features
- Edge of pavement road features as 3-D breaklines
- Soft features (ridges, valleys, etc.) as 3-D breaklines
- Low confidence areas as 2-D polygons; island features as 2-D or 2D polygons
- Overpasses and bridges as 3-D breaklines

The Coastal Shoreline breaklines were collected at the shoreline water elevation at the land-water interface. Breakline features were captured to develop a hydrologically correct DTM.

Automated QC processes were run on the breaklines and LiDAR elevation points to check for outlying elevations not probable within the mapping area. Additional visual QC was performed to verify the automated processes.

Breakline features were compiled in the softcopy environment using ImageStation SSK software on Pentium IV, quad processor, 3GHz photogrammetric workstations. Intergraph Corporation of Huntsville, Alabama, distributes the ImageStation SSK software.

The DTM was delivered as LiDAR mass points in LAS version 1.1 and the breaklines were delivered as an ArcGIS geodatabase. A list of the 33 LAS files delivered for the Pasco County Coastal Tiles may be found in Appendix C.

Contours were generated from a 30-foot gridded DEM: 2-foot contours meet NMAS, with 1-foot contours for visualization purposes. The LiDAR masspoints are delivered in the LAS 1.1 file format based on FDEM’s 5,000' by 5,000' grid. Contours were generated using TerraScan software, distributed by TerraScan, Inc., of Lincoln, Nebraska.

The dataset is comprised of an ESRI ArcGIS geodatabase containing the mass points (ground only), 2-D and 3-D breakline features, 1-foot and 2-foot contours, ground control, vertical test points, and a footprint of the data set; and LAS 1.1 binary files of the classified LiDAR points.
The LiDAR point classification codes for LAS 1.1 files are as follows:

- Class 1 = Unclassified
- Class 2 = Ground
- Class 7 = Noise
- Class 9 = Water
- Class 12 = Overlap

Classes 1, 2, 7, and 9 include LiDAR points in the overlap area between flight lines.

Class 1 is used for all features that do not fit into the Classes 2, 7, 9, or 12, including vegetation, buildings, etc.

Class 7 represents artifacts not representing the earth's surface (cell towers, birds, etc.) – Noise as defined above.

Shorelines of water bodies are captured as breaklines and LiDAR points inside of water bodies are classified as Class 9 = Water in the LAS deliverable.

Class 12 LiDAR points are in areas of overlapping flight lines, which have been deliberately deleted and removed from all other classes because of their reduced accuracy, for example, due to their off-nadir position.

Accuracy Checks

The vertical accuracy of the final LiDAR DTM/Mass-Point Data mapping was verified using the field-surveyed QC checkpoints. Results of those field verifications are included in Appendix B.

References

Florida GIS
Baseline Specifications for Orthophotography and LiDAR, v 1.2
http://www.floridadisaster.org/GIS/specifications/Documents/BaselineSpecifications_1.2.pdf

UGSG Internet Site for National Map Accuracy Standards.
http://erg.usgs.gov/isb/pubs/factsheets/fs17199.html#Map%20Accuracy

General Notes

1. **THIS REPORT IS NOT COMPLETE WITHOUT THE PORTABLE HARD DRIVE OF THE DIGITAL MAPPING, AND VICE VERSA.**

2. **INTENDED DISPLAY SCALE – THIS MAPPING IS INTENDED TO BE DISPLAYED AT A SCALE OF 1:1,200 (1"=100’) OR SMALLER.**

3. **THIS MAP COMPLIES WITH NATIONAL STANDARDS FOR SPATIAL DATA ACCURACY.**
4. THIS MAP COMPLIES WITH THE FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA) "GUIDELINES AND SPECIFICATIONS FOR FLOOD HAZARD MAPPING PARTNERS, APPENDIX A: GUIDANCE FOR AERIAL MAPPING AND SURVEYING."

THIS REPORT IS NOT VALID WITHOUT THE SIGNATURE AND RAISED SEAL OF A FLORIDA LICENSED SURVEYOR AND MAPPER IN RESPONSIBLE CHARGE.

Surveyor and Mapper in Responsible Charge
Richard R. Hudson, PE, PSM
Professional Surveyor and Mapper
License Number: PSM 5473

Signed: [Signature]
Date: 4/1/09

Seal:
APPENDIX A: MAPPING AREA AND QC CHECKPOINT LOCATIONS
APPENDIX B: LiDAR Accuracy Checks

The vertical accuracy of the LiDAR DTM was verified by comparison of the DTM/TIN against the field-surveyed QC checkpoints. The requirements are to acquire a minimum of one-hundred twenty (120) three-dimensional LiDAR QA/QC checkpoints per 500 square miles of project area. To the extent allowed by the terrain, the LiDAR control points and checkpoints are distributed so that points were spaced at intervals of at least 10% of the diagonal distance across the dataset and at least 20% of the points were located in each quadrant of the project area.

For this 30 square-mile area, 7 checkpoints are required – a total of 19 checkpoints were captured across the delivery area. Woolpert field crews observed and established 3-dimensional coordinates on four different types of landcover:

1. Bare-earth and low grass
2. Brush lands and low trees
3. Forested areas fully covered by trees
4. Urban areas

Woolpert acquired the QC checkpoints using rapid static GPS ground surveys, along with conventional surveying methods to locate points within dense tree cover. A detailed overview of the QA/QC checkpoint survey may be found in Volume 1 of this report.

The accuracy analysis was based on methods outlined in the Geospatial Positioning Accuracy Standards, Part 3: National Standards for Spatial Data Accuracy (NSSDA) developed by the Federal Geodetic Data Committee (FGDC-STD-007.3-1998). The first step was to generate a TIN from the DTM. Each QC checkpoint was then compared against its corresponding TIN elevation. The difference between field-surveyed QC checkpoint and DTM/TIN elevation represents the residual error (V_z) at that point. A statistical analysis was then performed on the residual errors.

Per contract specifications, the vertical accuracy requirement of the digital terrain model (DTM) is 0.6 foot at 95% confidence level using $RMSE_z (z) \times 1.9600$ as defined by the National Standard for Spatial Data Accuracy (NSSDA).

Vertical accuracy guidelines are as follows from FEMA’s Appendix A:

In category 1, the $RMSE_z$ must be < .30 ft ($Accuracy_z < .60$ feet)
In category 2, the $RMSE_z$ should be < .61 ft ($Accuracy_z < 1.19$ feet)
In category 3, the $RMSE_z$ should be < .61 ft ($Accuracy_z < 1.19$ feet)
In category 4, the $RMSE_z$ should be < .61 ft ($Accuracy_z < 1.19$ feet)
In all categories combined, the $RMSE_z$ should be < .61 ft ($Accuracy_z < 1.19$ feet)

Additionally, two-foot contours in unobscured areas are certified to meet or exceed National Map Accuracy Standards (NMAS). These standards state that not more than 10 percent of the elevations tested shall be in error by more than one-half the contour interval, and none will be in error by more than the full contour interval. Therefore, for a 2-foot contour interval, not more than 10 percent of the elevations tested shall be in error of more than 1 foot, and none will be in error by more than 2 feet. Two-foot contours within low confidence (obscured) areas are attributed as such and are not required to meet NMAS. Additionally, 1-foot contours are delivered for graphical purposes, and are not required to meet these accuracy standards.
The following table summarizes the statistical tests for the four landcover classifications, for the overall accuracy at all checkpoints, and NMAS within unobscured areas:

<table>
<thead>
<tr>
<th>Statistical Summary By LANDCOVER</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare Earth and Low Grass</td>
<td>Brush Lands and Low Trees</td>
<td></td>
</tr>
<tr>
<td>Calculated RMSEz</td>
<td>0.30 ft</td>
<td>Calculated RMSEz</td>
</tr>
<tr>
<td>Target RMSEz</td>
<td>0.30 ft</td>
<td>Target RMSEz</td>
</tr>
<tr>
<td>Calculated 95% CI</td>
<td>0.58 ft</td>
<td>Calculated 95% CI</td>
</tr>
<tr>
<td>Target 95% CI</td>
<td>0.60</td>
<td>Target 95% CI</td>
</tr>
<tr>
<td>Min</td>
<td>0.21 ft</td>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
<td>0.37</td>
<td>Max</td>
</tr>
<tr>
<td>Average</td>
<td>0.29 ft</td>
<td>Average</td>
</tr>
<tr>
<td>Count</td>
<td>4</td>
<td>Count</td>
</tr>
<tr>
<td>Forested Areas Fully Covered by Trees</td>
<td>Urban Areas</td>
<td></td>
</tr>
<tr>
<td>Calculated RMSEz</td>
<td>0.44 Ft</td>
<td>Calculated RMSEz</td>
</tr>
<tr>
<td>Target RMSEz</td>
<td>0.61</td>
<td>Target RMSEz</td>
</tr>
<tr>
<td>Calculated 95% CI</td>
<td>0.86 Ft</td>
<td>Calculated 95% CI</td>
</tr>
<tr>
<td>Target 95% CI</td>
<td>1.19</td>
<td>Target 95% CI</td>
</tr>
<tr>
<td>Min</td>
<td>0.15</td>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
<td>0.70</td>
<td>Max</td>
</tr>
<tr>
<td>Average</td>
<td>0.37</td>
<td>Average</td>
</tr>
<tr>
<td>Count</td>
<td>4</td>
<td>Count</td>
</tr>
<tr>
<td>Overall at All Checkpoints</td>
<td>Unobscured LANDCOVER NMAS</td>
<td></td>
</tr>
<tr>
<td>Calculated RMSEz</td>
<td>0.37 Ft</td>
<td>Calculated 90th Percentile</td>
</tr>
<tr>
<td>Target RMSEz</td>
<td>0.61</td>
<td>Target 90th Percentile</td>
</tr>
<tr>
<td>Calculated 95% CI</td>
<td>0.73 Ft</td>
<td>Calculated Max</td>
</tr>
<tr>
<td>Target 95% CI</td>
<td>1.19</td>
<td>Target Max</td>
</tr>
<tr>
<td>Min</td>
<td>0.08</td>
<td>Count</td>
</tr>
<tr>
<td>Max</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
The calculated RMSEz and 95% confidence interval (CI) are shown for each of the four landcover types, and for all landcover types combined. To calculate the correlation to NMAS, only the Bare Earth and Low Grass, and the Urban Areas landcover types were considered, because these are the only “unobscured” landcover types. To calculate “not more than 10 percent” of the values, the 90th Percentile was determined for the combined Bare Earth and Low Grass, and the Urban Areas landcover measurements.

The following table lists the test results for all checkpoints:

<table>
<thead>
<tr>
<th>Image Tile</th>
<th>QC Point</th>
<th>Field Truth (US SV FT)</th>
<th>DTM Measurement (US SV FT)</th>
<th>Residual Error (US SV FT)</th>
<th>LANDCOVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELLENUM</td>
<td>ID</td>
<td>Northing</td>
<td>Easting</td>
<td>Elevation</td>
<td>Elevation</td>
</tr>
<tr>
<td>064283_W</td>
<td>10366</td>
<td>1425802.76</td>
<td>412555.13</td>
<td>3.47</td>
<td>3.84</td>
</tr>
<tr>
<td>065482_W</td>
<td>20131</td>
<td>1405297.16</td>
<td>409508.23</td>
<td>8.74</td>
<td>8.97</td>
</tr>
<tr>
<td>065482_W</td>
<td>20134</td>
<td>1405470.77</td>
<td>409231.71</td>
<td>9.82</td>
<td>10.03</td>
</tr>
<tr>
<td>061587_W</td>
<td>30120</td>
<td>1472450.30</td>
<td>434043.34</td>
<td>5.12</td>
<td>4.78</td>
</tr>
<tr>
<td>063685_W</td>
<td>10362</td>
<td>1436653.16</td>
<td>423350.23</td>
<td>7.79</td>
<td>7.59</td>
</tr>
<tr>
<td>061587_W</td>
<td>10368</td>
<td>1472827.86</td>
<td>434085.64</td>
<td>6.54</td>
<td>6.08</td>
</tr>
<tr>
<td>061587_W</td>
<td>10372</td>
<td>1472473.16</td>
<td>434080.52</td>
<td>4.55</td>
<td>4.32</td>
</tr>
<tr>
<td>065482_W</td>
<td>20133</td>
<td>1405357.25</td>
<td>409111.51</td>
<td>10.15</td>
<td>10.44</td>
</tr>
<tr>
<td>061887_W</td>
<td>30122</td>
<td>1466407.71</td>
<td>434022.41</td>
<td>9.27</td>
<td>8.90</td>
</tr>
<tr>
<td>063685_W</td>
<td>10364</td>
<td>1435120.50</td>
<td>420807.65</td>
<td>2.93</td>
<td>2.72</td>
</tr>
<tr>
<td>063984_W</td>
<td>10365</td>
<td>1432104.17</td>
<td>418866.98</td>
<td>3.59</td>
<td>3.85</td>
</tr>
<tr>
<td>061887_W</td>
<td>10369</td>
<td>1466468.32</td>
<td>434190.04</td>
<td>6.10</td>
<td>5.79</td>
</tr>
<tr>
<td>064283_W</td>
<td>10375</td>
<td>1425767.51</td>
<td>412405.70</td>
<td>6.06</td>
<td>5.28</td>
</tr>
<tr>
<td>Image Tile</td>
<td>QC Point</td>
<td>Field Truth (US SV FT)</td>
<td>DTM Measurement (US SV FT)</td>
<td>Residual Error (US SV FT)</td>
<td>LANDCOVER</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northing</td>
<td>Easting</td>
<td>Elevation</td>
<td>Elevation</td>
</tr>
<tr>
<td>064883_W</td>
<td>20129</td>
<td>1419501.00</td>
<td>410928.79</td>
<td>7.92</td>
<td>8.00</td>
</tr>
<tr>
<td>061887_W</td>
<td>30123</td>
<td>1466357.54</td>
<td>434074.55</td>
<td>8.29</td>
<td>7.91</td>
</tr>
<tr>
<td>061887_W</td>
<td>10370</td>
<td>1466330.65</td>
<td>434182.95</td>
<td>8.57</td>
<td>8.42</td>
</tr>
<tr>
<td>061887_W</td>
<td>10371</td>
<td>1466311.45</td>
<td>434065.64</td>
<td>8.30</td>
<td>7.60</td>
</tr>
<tr>
<td>061587_W</td>
<td>10373</td>
<td>1472379.32</td>
<td>434012.07</td>
<td>4.45</td>
<td>3.97</td>
</tr>
<tr>
<td>064283_W</td>
<td>10374</td>
<td>1425813.93</td>
<td>412433.05</td>
<td>4.59</td>
<td>4.75</td>
</tr>
</tbody>
</table>
APPENDIX C: LAS FILES DELIVERED

<table>
<thead>
<tr>
<th>File Name</th>
<th>File Name</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LID2007_060688_W.las</td>
<td>LID2007_062485_W.las</td>
<td>LID2007_064284_W.las</td>
</tr>
<tr>
<td>LID2007_060987_W.las</td>
<td>LID2007_062785_W.las</td>
<td>LID2007_064882_W.las</td>
</tr>
<tr>
<td>LID2007_061586_W.las</td>
<td>LID2007_063384_W.las</td>
<td>LID2007_065183_W.las</td>
</tr>
<tr>
<td>LID2007_061886_W.las</td>
<td>LID2007_063684_W.las</td>
<td>LID2007_065482_W.las</td>
</tr>
<tr>
<td>LID2007_061887_W.las</td>
<td>LID2007_063685_W.las</td>
<td>LID2007_065780_W.las</td>
</tr>
<tr>
<td>LID2007_062185_W.las</td>
<td>LID2007_063984_W.las</td>
<td>LID2007_065781_W.las</td>
</tr>
</tbody>
</table>
Appendix D: LiDAR Calibration

Photo Science ALS50 LiDAR Calibrations

Introduction

Woolpert Team member Photo Science, Inc., performed all LiDAR acquisition and post processing. The following is the LiDAR system calibration report from Photo Science.

Overview

This Calibration Report shall be used to confirm LiDAR system specifications, performance, and requirements. The system functionality, elevation, and horizontal accuracy performance shall be demonstrated for calibration purposes. Photo Science completes calibration flights at regular intervals for ongoing monitoring of correction values, both at our home airport as well as in the field.

Once computed, the various derived values for correcting the inherent errors in the system should remain fairly constant, monitoring to ensure that no value starts to change more than expected. The sensors come from the factory with a set of values provided, measured by Leica, many of which will not change over the life of the system. Even moving a sensor in to and out of an aircraft should not appreciably change the correction values unless it experiences a hard bump or other trauma; the calibrated values are internal to the sensor.

Our main source of calibration data is collected in the form of Leica’s prescribed Attune method. This involves collecting opposing passes at right angles to one another at 1270m above ground, and again at 770m above ground, centered over the same ground features, and using their proprietary calibration software for picking common tiepoints to determine roll, pitch, and heading correction values. They normally require 4 total passes at a minimum (2 high, 2 low) and have strong suggestions about types of features to use as tie-points.

We have slightly modified Leica’s Attune flight procedure, with their guidance, wherein we fly 10 passes (4 high crisscross, 2 high offset, and 4 low crisscross) as seen below. This terrain includes not only the flat pavement of the airport and its surroundings, but a large amount of residential and commercial features in a gently rolling setting.
Periodically, roughly twice a year, we collect calibration data at 11000 feet above our home airport and have it analyzed by Leica with their higher-level calibration regimen. The increased flying height exaggerates the internal misalignments and makes them easier to measure, serving as tighter comparison benchmarks for the previous and subsequent Attune flights.
For this entire project we used the following sensors and aircraft:
Leica ALS50 Phase II Capable: serial number 019, mounted in N7320G
Leica ALS50 Phase II : serial number 059, mounted in N9471R and N2448G
Leica ALS50 Phase II : serial number 062, mounted in N2448G

Antenna Offsets

We mount our LiDAR systems exclusively in our fleet of Cessna 206 aircraft, removing them as little as possible to help maintain consistent system integrity. As such, our GPS antennas and the mounting plates for the sensor heads remain constant per plane. Once a new plane or sensor is incorporated in to our fleet and the initial sensor installation is completed, we have our ground survey team derive the offsets with a total station. That antenna offset value will not change unless the placement of a sensor’s head within the aircraft changes.

N7320G, 1977 Cessna 206
X = -0.07
Y = 0.05
Z = -1.10

N9471R, 1985 Cessna 206
X = 0.875
Y = -0.125
Z = 1.012

N2448G, 2001 Cessna 206
X = -0.018
Y = -0.169
Z = -1.057

Leica provides their precisely measured internal IMU offsets, with respect to the focal point of the system’s mirror, per each of the 2 types of IMU they use. These are embedded into the sensors’ firmware for carrying forward into the subsequent trajectory-generating software, so these are not measured by us.

GPS Base Stationing

Whether calibration flights occur at our home airport (FFT – Capital City Airport in Frankfort, KY) or in the field on a project site, we strive to set up our GPS base station over the Primary Airport Control Station (PACS) as indicated by the National Geodetic Survey. If this is not possible, or the flight is only for purposes of resolving roll, pitch, and heading corrections, we can use almost any point because the software is solving the
corrections for these parameters within the flight’s data, not with respect to absolute positions on the ground.

Photo Science uses Trimble 5700 GPS data logging units paired with Trimble Zephyr Geodetic antennas. We log at a 2hz interval (every ½ second) and with a 5 degree elevation mask. We also use variable height tripods, measured and logged at the beginning and end of each session.

Ground Control Points / Vertical Bias

Due to electronic delay within the sensor, there is a constant element of vertical bias which must be corrected. We have surveyed many points along the length and width of the runway and taxiways of our home airport and reference this in to our calibration flights to monitor over time that the pertinent correction value is unchanging. In the case of an upgrade or repair to certain parts of the sensor, we recalculate this value.

Overall Calibration Results

The values below are a combination of constants provided by the manufacturer and variables derived from analysis of data collected over Photo Science’s calibration site(s). These were the used throughout the Florida Gulf Coast 2007 project, with minor variations per individual aircraft sortie as needed.

June 23rd, 2007

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leica provided</td>
<td></td>
</tr>
<tr>
<td>Encoder Latency</td>
<td>0.0 mcr sec</td>
</tr>
<tr>
<td>Ticks Per Revolution</td>
<td>8388608 ticks</td>
</tr>
<tr>
<td>Ranging Correction</td>
<td>-0.48m</td>
</tr>
<tr>
<td>Scan Angle</td>
<td></td>
</tr>
<tr>
<td>Correction</td>
<td>-19120 ticks</td>
</tr>
<tr>
<td>Pitch Slope</td>
<td>0.0000185 rad/deg</td>
</tr>
<tr>
<td>Attitude</td>
<td></td>
</tr>
<tr>
<td>Roll</td>
<td>0.00088397 rad</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.00966448 rad</td>
</tr>
<tr>
<td>Heading</td>
<td>-0.00282358 rad</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Torsion</td>
<td>-19370 units</td>
</tr>
</tbody>
</table>
June 14th, 2007

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leica provided</td>
<td></td>
</tr>
<tr>
<td>Encoder Latency</td>
<td>0.5 mcr sec</td>
</tr>
<tr>
<td>Ticks Per Revolution</td>
<td>8388608 ticks</td>
</tr>
<tr>
<td>Ranging Correction</td>
<td>1.258m</td>
</tr>
<tr>
<td>Scan Angle Correction</td>
<td>8000 ticks</td>
</tr>
<tr>
<td>Pitch Slope</td>
<td>0.000058 rad/deg</td>
</tr>
<tr>
<td>Attitude</td>
<td></td>
</tr>
<tr>
<td>Roll</td>
<td>0.00170705 rad</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.01463471 rad</td>
</tr>
<tr>
<td>Heading</td>
<td>-0.00165231 rad</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Torsion</td>
<td>-60000 units</td>
</tr>
</tbody>
</table>

Provided by Leica – their ‘loaner’ unit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leica provided</td>
<td></td>
</tr>
<tr>
<td>Encoder Latency</td>
<td>0.0 mcr sec</td>
</tr>
<tr>
<td>Ticks Per Revolution</td>
<td>8388608 ticks</td>
</tr>
<tr>
<td>Ranging Correction</td>
<td>2.425m</td>
</tr>
<tr>
<td>Scan Angle Correction</td>
<td>23800 ticks</td>
</tr>
<tr>
<td>Pitch Slope</td>
<td>0.00000011 rad/deg</td>
</tr>
<tr>
<td>Attitude</td>
<td></td>
</tr>
<tr>
<td>Roll</td>
<td>0.004918 rad</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.00956337 rad</td>
</tr>
<tr>
<td>Heading</td>
<td>0.0000545 rad</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Torsion</td>
<td>-35000 units</td>
</tr>
</tbody>
</table>