

Survey Report San Juan/Puerto Nuevo, Puerto Rico Aerial Imagery

Prepared For:

Jacksonville District USACE Geomatics Section

Prepared By:

Premier Geospatial, Inc.

SURVEY 13-034 REPORT DATE: APRIL 30, 2013

Survey Report

Survey 13-034 San Juan/Puerto Nuevo, Puerto Rico Aerial Imagery

Prepared For: Jacksonville District U.S. Army Corps of Engineers Geomatics Section 701 San Marco Blvd. Jacksonville, FL 32207 Phone: (904) 232 - 2214

Prepared By: **Premier Geospatial, Inc.** 15000 W 64th Ave Arvada, CO 80007 Phone: (303) 302 - 8600

Table of Contents

1 Introduction and Specifications
2 Spatial Reference System
3 Abbreviations and Definitions
4 Aerial Imagery Survey
4.1 Survey Area
4.2 Sensor Information
4.3 Survey Parameters
4.4 Survey Dates
5 Image Processing
5.1 Raw Data Extraction7
5.2 Airborne GPS/IMU7
5.3 Aero Triangulation20
5.4 Surface Model21
5.5 Orthorectification
5.6 Mosaic
5.7 Stereo Imagery26
Appendices
Appendix A. Flight Logs27
Appendix B. Base Station Data Sheet32
Appendix C. Base Station Log Sheets34
Appendix D. Sensor Calibration Report41
Appendix E. Survey Map47

1 Introduction and Specifications

Premier Geospatial, Inc. (PremierGeo) was tasked by the U.S. Army Corps of Engineers (CORPS) to obtain new digital aerial imagery covering the San Juan and Puerto Nuevo regions of the Commonwealth of Puerto Rico. The project area encompasses approximately 181 square kilometers of land and adjacent water bodies. The aerial imagery was collected utilizing a Leica Geosystems ADS40 – II sensor. The aircraft utilized during collection was a twin-piston Cessna 402C.

Imagery collection was coordinated to occur during periods in which environmental conditions would not obstruct the view of the Earth's surface. Survey missions occurred during a solar elevation window of 25 degrees to 55 degrees above the horizon. Survey lines were flown at a nominal height of 3200' AMT to collect imagery with a nominal 10cm GSD. Imagery collection was completed in four survey missions between the dates of March 13, 2013 through March 15, 2013.

Control for the aerial imagery exposure stations was provided by ABGPS/IMU data collected simultaneously with imagery and ground based GPS data used to differentially correct the airborne data. Photo-identifiable features surveyed using static and RTK surveys were observed during aero-triangulation to provide final adjustment to the project datum. Imagery was orthorectified to a hybrid surface gridded from existing LiDAR derived mass points and new auto-correlated mass points in select areas.

2 Spatial Reference System

The spatial reference of the imagery is as follows.

Horizontal Spatial Reference

- Projection: State Plane Puerto Rico Virgin Islands, units of Meters
- Datum: North American Datum of 1983 (2011)

Vertical Spatial Reference

- Orthometric Heights: Puerto Rico Vertical Datum of 2002 (GEOID12A)
- Ellipsoidal Heights: Geodetic Reference System 1980

3 Abbreviations and Definitions

ABGPS – Airborne Global Positioning System AMT – Above Mean Terrain BRDF - Bi-directional Reflectance Distribution Function DEM – Digital Elevation Model EO – Exterior Orientation GSD – Ground Sample Distance GCP - Ground Control Point QC – Quality Control **GPS** – Global Positioning System IMU – Inertial Measurement Unit MMU – Mass Memory Unit NAD83(2011) - North American Datum 1983, 2011 adjustment NGS OPUS – Online Positioning User Service PRVD02(GEOID99) - Puerto Rico Vertical Datum 2002, NGS GEOID99 realization PRVD02(GEOID12A) – Puerto Rico Vertical Datum 2002, NGS GEOID12A realization USGS NED - United States Geological Survey National Elevation Dataset

4 Aerial Imagery Survey

4.1 Survey Area

The survey area covers approximately 181 square kilometers of the San Juan and Puerto Nuevo regions of the Commonwealth of Puerto Rico. The survey provides new imagery depicting current conditions of various CORPS civil works projects along the Rio Puerto Nuevo and its associated drainages.

Puerto Rico Survey Area

4.2 Sensor Information

PremierGeo utilized the ADS40 – II pushbroom sensor to collect aerial imagery during the survey flights.

Leica Geosystems ADS40 SH51 - S/N 1326

GPS Antenna – AeroAntenna Technology (AAT) Model 512 Rev 2, survey grade dual frequency L1/L2 GPS Receiver – Novatel OEM4 IMU – Litton LN200 integrated with Applanix POS AV-ADC

The ADS40 – II is a "push broom" style sensor, collecting imagery with linear CCD lines in a continuous manner along a given flight line. The ADS sensor used simultaneously collected 7 CCD lines at a swath

width of 12,000 pixels each and cross track Field of View (FOV) angle of 64 degrees. The ADS40 – II CCDs have pixel dimensions of 6.5 microns x 6.5 microns, and the sensor's calibrated focal length is 62.7mm.

Image Channel	Look Angle	Wave Length
Panchromatic Forward	+27 degrees	465 - 680 nm
Panchromatic Nadir	+2 degrees	465 - 680 nm
Panchromatic Back	- 14 degrees	465 - 680 nm
Red Nadir	0 degrees	608 - 662 nm
Green Nadir	0 degrees	533 - 587 nm
Blue Nadir	0 degrees	428 - 492 nm
Near-infrared Nadir	0 degrees	833 - 837 nm

ADS40 – II Image Channels

The multi-spectral channels at nadir are 'optically' co-registered through the use of a tetrachroid beam splitter. The focal plane and optics of the ADS40 – II permit all image channels to be collected at the native GSD. No multi-spectral image channels are "pan-sharpened" to obtain final resolution multi-spectral images. The current sensor calibration report is attached in Appendix D, Sensor Calibration Report.

4.3 Survey Parameters

Survey parameters were selected in the context of the accuracy and GSD requirements for the project, and the hypsography of the survey area. The fixed focal length of the ADS40 – II places aircraft flying height AMT, speed over ground, and sensor integration time as the configurable variables in deriving a particular GSD. Side overlap is selected to provide sufficient areas for tie point matching during aero-triangulation and to allow exclusion of the most off-nadir areas from the orthomosaic. Speed over ground and sensor integration time control the GSD in the along-track direction of the sensor. Existing USGS NED data is used during planning to estimate the GSD and sidelap that will be achieved for each line in the survey plan.

Survey Parameter	Value
Flying Height AMT	3200 feet
Sidelap	35 %
Speed Over Ground	135 knots
Integration Time	1.25 milliseconds
Line Spacing	2500 feet
Total Length of Lines	276.26 km
GSD	10 cm

Survey Parameters – Flight Plan and Sensor Settings

4.4 Survey Dates

All mobilizations and survey missions occurred during March 2013. Imagery was collected during the four survey missions listed below, with multiple re-flights performed to mitigate cloud shadows frequently encountered during surveys in tropical regions. Imagery from the 3/14/2013 mission was not used in the final mosaic due to extensive cloud shadows present in the imagery.

Date	Sensor
03/13/2013	ADS40 SH51 - S/N 1326
03/14/2013	ADS40 SH51 - S/N 1326
03/15/2013 Lift A	ADS40 SH51 - S/N 1326
03/15/2013 Lift B	ADS40 SH51 - S/N 1326

Survey Mission Dates

5 Image Processing

5.1 Raw Data Extraction

Leica Geosystems GPro version 3.3.1.79 was used to download the raw flight data from the MMU. Raw data for the ADS sensor consists of the un-rectified strip images in TIFF format, commonly referred to as L0 images in ADS workflows, and the raw ABGPS/IMU observables.

5.2 ABGPS/IMU

ABGPS/IMU data was collected on the aircraft during the survey mission, providing sensor position and orientation information for geo-referencing the imagery data. ABGPS observations were collected at a frequency of 2Hz, and IMU observations were collected at a frequency of 200Hz. Precise lever arm measurements from the ABGPS/IMU measurement reference points to the principal point of the ADS focal plane are used in reducing the raw vehicle position/attitude observables to sensor exterior orientation. These lever arm measurements are measured during sensor installation in the survey aircraft.

Navigation Sensor to ADS Lever Arms

GPS data was collected with a ground base station during the survey mission, providing corrections to support differential post-processing of the ABGPS. The ground GPS base station was setup on a temporary benchmark designated as PUR1, located at the Isla Grande Airport in San Juan, Puerto Rico. Ground GPS observations were collected at a frequency of 2Hz. Reference coordinates for the temporary benchmark were derived using NGS OPUS software, operated in the Static mode with a minimum of 4.5 hours of 2 hertz observations. The NGS OPUS datasheet for PUR1 is in Appendix B, Base Station Datasheet. Base station log sheets are in Appendix C, Base Station Logs.

Date	Benchmark	Antenna Height
03/13/2013	Temporary BM (PUR1) at Isla Grande Airport	1.795 meters
03/14/2013	Temporary BM (PUR1) at Isla Grande Airport	1.826 meters
03/15/2013	Temporary BM (PUR1) at Isla Grande Airport	1.800 meters

Differential correction of the ABGPS data using the ground base station data was performed in Waypoint GravNav software version 8.4. The NAD83(2011) geodetic coordinates developed through NGS OPUS for PUR1 were held as reference during differential correction. Corrected ABGPS data was exported from GrafNav for Applanix POSPac software version 4.3. POSPac was used to combine the ABGPS and IMU data through a Kalman filtering algorithm to arrive at a smoothed best estimate of the sensor's trajectory during the survey missions. This trajectory estimate along with precise exposure timing data provide initial EO estimates for the imagery in aero-triangulation. The graphs and map following below provide a summary of the trajectory quality and show the trajectory events from each survey mission.

13032013 GPS PDOP Graph - Spikes generally correspond to turns.

13032013 GPS Combined Separation Graph – Shows difference between forward and reverse differential GPS solution. Spike near time 331000 occurs in a turn.

13032013 GPS Standard Deviation Graph – Shows estimated standard deviation of position solution. Spikes generally occur in turns.

14032013 GPS PDOP Graph – Spikes generally correspond to turns.

14032013 GPS Combined Separation Graph – Shows difference between forward and reverse differential GPS solution.

14032013 GPS Standard Deviation Graph – Shows estimated standard deviation of position solution. Spikes generally occur in turns.

15032013a GPS PDOP Graph – Spikes generally correspond to turns.

15032013a GPS Combined Separation Graph – Shows difference between forward and reverse differential GPS solution.

15032013a GPS Standard Deviation Graph – Shows estimated standard deviation of position solution. Spikes generally occur in turns.

15032013b GPS PDOP Graph – Spikes generally correspond to turns.

15032013b GPS Combined Separation Graph – Shows difference between forward and reverse differential GPS solution.

15032013b GPS Standard Deviation Graph – Shows estimated standard deviation of position solution. Spikes generally occur in turns.

Survey 13-034 San Juan/Puerto Nuevo, Puerto Rico Airborne GPS/IMU Events Prepared For: Jacksonville District USACE Prepared By: Premier Geospatial, Inc. Survey Date: 3/13/2013 - 3/15/2013

Aerial Sensor: ADS40 - IIHorizontal Datum: NAD83(2011)Ground Sample Distance: 10cmVertical Datum: PRVD02(GE0ID12A)

5.3 Aero-triangulation

Aero-triangulation was performed using StellaCore PictoVera software version 1.3.15. PictoVera's automatic point matching algorithm was used to match image tie points in the side overlap between adjacent image strips. The tie point observations were used in a least squares bundle adjustment to solve for systematic errors in the smoothed best estimate of trajectory, including GPS drift and timing offsets. The bundle adjustment also identifies and eliminates measurement blunders in the tie points. All survey flight lines were processed in a single aero-triangulation block.

After solving for systematic navigation errors and removing measurement blunders, ground control points were manually measured in the imagery. Ground control points coordinates used had horizontal reference of Puerto Rico State Plane, NAD83(2011), meters; and vertical reference of GRS80 ellipsoid heights, meters. AT for the ADS sensor is performed in the ellipsoid vertical reference to avoid systematic errors that geoid undulations cause in the pushbroom sensor model. The ground control point observations are used to solve for any remaining datum transformation required to determine EO in the project datum. Ground control points for this project consisted of photo-identifiable features. Ground control data collection and processing was performed by Gustin, Cothern & Tucker, Inc. of Niceville, FL.

Ground control points were assigned statistical weight, equivalent to their estimated accuracy, in the final least squares adjustment to solve for the control datum transformation. In order to validate the datum transformation solution, selected ground control points in the interior of the aero-triangulation block were permitted to statistically float (making them true check points). The least-squares adjustment RMSE values of these points when configured as check were compared to the RMSE values obtained when the same points were weighted as control to validate the solution. Points ACK_1, ACK_2-B, ACK_3, and PGEO_PR1 were selected as the candidate check points for this validation. The tables below summarize the RMSE for all observations of each point; both control and check, under different weighting scenarios.

PID	RMSE x (m)	RMSE y (m)	RMSE z (m)	Magnitude (m)
ACK_1	-0.080	-0.027	-0.066	0.107
ACK_2-B	0.059	-0.027	-0.182	0.194
ACK_3	-0.017	-0.016	-0.019	0.030
PGEO_PR1	0.090	0.117	-0.024	0.149

RMSE of check points with check points allowed to float:

RMSE of check points with checkpoints weighted as control:

PID	RMSE x (m)	RMSE y (m)	RMSE z (m)	Magnitude (m)
ACK_1	-0.073	-0.036	-0.023	0.085
ACK_2-B	0.067	-0.023	-0.115	0.135
ACK_3	-0.022	-0.017	0.009	0.030
PGEO_PR1	0.077	0.112	-0.021	0.137

RMSE of control points with check points allowed to float:

PID	RMSE x (m)	RMSE y (m)	RMSE z (m)	Magnitude (m)
ACL_1	-0.045	-0.017	-0.011	0.049
ACL_2	-0.079	-0.110	0.054	0.146
ACL_3	-0.065	-0.062	-0.080	0.120
ACL_4	0.055	-0.007	0.014	0.058
ACL_5	0.059	0.010	-0.044	0.074
ACL_6	0.004	0.012	0.032	0.034
PGEO_PR2	0.051	0.053	-0.021	0.076
PGEO_PR3	0.025	0.139	-0.007	0.141

RMSE of control points with checkpoints weighted as control:

PID	RMSE x (m)	RMSE y (m)	RMSE z (m)	Magnitude (m)
ACL_1	-0.052	-0.033	-0.012	0.062
ACL_2	-0.086	-0.104	0.091	0.162
ACL_3	-0.077	-0.065	-0.069	0.122
ACL_4	0.067	-0.023	0.057	0.091
ACL_5	0.070	0.020	0.041	0.083
ACL_6	0.007	0.010	0.077	0.078
PGE0_PR2	0.037	0.047	-0.021	0.063
PGE0_PR3	0.009	0.133	-0.010	0.134

The RMSE values for measurements at control and check points are consistent at the sub-pixel level when the check points are allowed to float in the final least squares adjustment and when they are held fixed as control. This consistency validates the aero-triangulation solution, and provides a high degree of confidence that there are no remaining systematic errors or blunders distorting the solution.

5.4 Surface Model

PremierGeo used two sources of elevation data to develop a DEM for orthorectification of the collected imagery. A bare-earth LiDAR mass point dataset, originally collected in 2004 at a nominal point spacing of 2 meters, was provided by the Government. This dataset was loaded into TerraSolid TerraScan software, reviewed for non-ground artifacts, and edited where necessary. A DEM was gridded from the edited LiDAR mass points at 1.524 meter post spacing.

Available metadata for the existing LiDAR data was somewhat ambiguous regarding the vertical datum reference, but appeared to indicate a vertical datum of PRVD02(GEOID99). Initially, delta-z's were calculated at aero-triangulation control points between the surveyed z values (orthometric heights referenced to PRVD02(GEOID12A)) and surface z values (orthometric heights referenced to PRVD02(GEOID12A)). The calculated delta-z values showed a substantial discrepancy between the ground control and the surface, with surface heights an average of 1.76 meters **higher** than the control point heights.

GCP	LiDAR z (m)	GCP z (m)	Difference (m)
PGEO1	5.165	3.360	1.805
PGEO2	4.284	2.479	1.805
PGEO3	4.846	3.170	1.676
ACL1	5.958	4.002	1.956
ACL2	2.903	1.638	1.265
ACL3	8.759	6.921	1.838
ACL4	45.453	43.558	1.895
ACL5	94.921	92.989	1.932
ACL6	20.449	18.360	2.089
ACK1	45.189	43.335	1.854
ACK2-T	36.837	35.241	1.596
ACK2-B	36.863	35.441	1.422
ACK3	4.508	2.775	1.733
		Average dZ (m) =	1.759

Orthometric Height Surface to Control Comparison

The next step taken in examining the LiDAR data was to convert its vertical reference to ellipsoid heights and recalculate the control point delta-z's against the control point ellipsoid heights. The LiDAR data was converted to ellipsoid heights using the published NGS GEOID99 geoid height grids. The ellipsoid heights calculated from post processing of the survey data were used for the aero-triangulation control points. The calculated delta-z values in ellipsoid heights showed a better fit, with the surface heights an average of 0.54 meters **lower** than the control point heights.

GCP	LiDAR z (m)	GCP z (m)	Difference (m)
PGEO1	-40.023	-39.523	-0.500
PGEO2	-40.901	-40.413	-0.488
PGEO3	-40.521	-39.895	-0.626
ACL1	-38.692	-38.365	-0.327
ACL2	-41.693	-40.693	-1.000
ACL3	-36.283	-35.829	-0.454
ACL4	2.240	2.661	-0.421
ACL5	51.594	52.007	-0.413
ACL6	-23.414	-23.220	-0.194
ACK1	1.576	2.038	-0.462
ACK2-T	-6.683	-5.980	-0.703
ACK2-B	-6.662	-5.783	-0.879
ACK3	-39.956	-39.416	-0.540
		Average dZ (m) =	-0.539

Ellipsoid Height Surface to Control Comparison

These comparisons indicate that there is potentially a difference between the GEOID99 height models and the GEOID12A height models, as the surface fits the control better when both are reduced to ellipsoid. An additional z-shift of + 0.54 meters was applied to the ellipsoid LiDAR data to bring into reasonable agreement with the aero-triangulation control.

With the z reference ambiguities resolved, focus was shifted to potential areas of ground change within the project area. The second source of elevation data used for the project was an auto-correlated surface covering the survey area, generated by PremierGeo from the new imagery, using the auto-correlation module in the PictoVera software. The module correlates a dense elevation network of mass points from the stereo-viewable imagery of each flight line, with an approximate density of one point per 2 meters. The auto-correlated mass points represent ground and above ground features and must be filtered to bare-earth for use in orthorectification. This dataset was also gridded at 1.524 meter post spacing, consistent with the LiDAR derived DEM.

The strategy chosen to develop the final orthorectification surface was to supplement the LiDAR surface in areas of significant ground change with the autocorrelated surface. Editing an autorcorrelated surface for the entire project area to the level required for orthorectification was beyond the scope of the project. The two surfaces were compared to identify areas where edits should be focused. A difference surface was calculated between the two datasets (depicted on the next page) to identify these areas. Areas inspected were those falling in the range of 6 – 12+ feet of difference. Difference values below this threshold were generally found to be low vegetation noise in the autocorrelated points. The comparison identified three areas (encompassed in the circular polygons in the graphic on the next page) within the southern half of the project boundary that had significant ground change between 2004 and 2013. Other areas with change above the threshold were either buildings or high vegetation in the autocorrelated points. The LiDAR derived DEM was replaced with the autocorrelated DEM in these three areas, and any above ground artifacts removed in TerraScan. The final orthorectification DEM was gridded at 1.524 meter post spacing.

LiDAR to Autocorrelated Difference Surface

5.5 Orthorectification

Orthorectification of imagery was accomplished with the PictoVera software version 1.3.15 rectification module, which provided a seamless workflow for block bundle adjustment and generation of orthoimages. The PictoVera rectification module used the block bundle adjustment solution developed in the bundle adjustment module and the L0 images as inputs.

Radiometric correction of the imagery included applying the manufacturer's calibration and a proprietary process to account for atmospheric and lighting effects. Two principal effects were considered in the proprietary correction; atmospheric haze and bi-directional reflectance. Atmospheric haze describes the effect of sunlight reflecting off of aerosols dispersed in the atmosphere, especially in the blue wavelength of the visible light spectrum. Bi-directional reflectance describes the non-uniform brightness of the ground scene in an aerial image caused by varied viewing and illumination angles. Due to the ADS sensor's consistent nadir geometry in the along-track flight direction of the image strip, haze and reflectance only affect the ADS sensor in the across track direction of the image strip. The algorithm works by sampling the pixel values throughout the image strip and calculating an average pixel value for each column of pixels across the sensor track. A polynomial function is used to normalize the samples to remove any anomalies, such as specular reflection on water, from the column averages. Mean brightness of the column averages are calculated, and a correction value determined to adjust the average pixel value of each column in the strip to the mean. The corrections were calculated and applied in the raw 12-bit dynamic range of the ADS sensor, permitting a more accurate correction than one applied after the imagery has been histogram stretched for 8-bit storage and viewing. Correction values were stored in separate files for each multi-spectral image and were applied by the orthorectification module during orthoimage output. The manufacturer's factory calibrated radiometric gain parameters were also applied during orthorectification, modeling the variable sensitivity of each CCD in the ADS sensor to the wavelength of light it is assigned to collect.

The assembled DEM and atmospheric correction files were added to the PictoVera block definition. The rectification module was used to generate a 4-band orthorectified image strip, commonly referred to as L2 images in ADS workflows. The band order of the L2 was Red in Band 1, Green in Band 2, Blue in Band 3, and Near-Infrared in Band 4. The L2 was stored in 16-bit GeoTIFF file format, and had the atmospheric corrected 12-bit dynamic range of the ADS sensor. The L2 images were validated for relative and absolute horizontal accuracy by visual inspection using the inpho OrthoVista software. Photogrammetric technicians manually measured common features in the sidelap region of adjacent images and photo-identifiable ground control points to validate relative and absolute accuracy of the L2s. The results of the horizontal accuracy assessment are outlined in the table below. With horizontal accuracy requirements validated, the imagery was moved into the mosaic phase.

POINT ID	CONTF	ROL (m)	IMAG	E (m)	DELTA (m)					
	EASTING	NORTHING	EASTING	NORTHING	EASTING	NORTHING	HORIZ			
PGEO_3	235323.99	269790.49	235323.97	269790.49	0.021	-0.004	0.022			
PGEO_2	235196.57	268909.96	235196.51	268909.93	0.066	0.031	0.073			
PGEO_1	235877.35	268879.36	235877.27	268879.36	0.077	-0.001	0.077			
ACK_1	234031.29	259982.71	234031.30	259982.70	-0.009	0.005	0.010			
ACK_2 - B	239630.16	259438.05	239630.18	259438.07	-0.019	-0.029	0.034			
ACK_3	237309.23	265093.07	237309.29	265093.07	-0.060	0.002	0.060			
ACL_1	230740.40	266006.10	230740.43	266006.14	-0.030	-0.040	0.050			
ACL_2	240677.43	265872.65	240677.53	265872.58	-0.098	0.075	0.124			
ACL_3	237037.60	268174.61	237037.57	268174.62	0.025	-0.001	0.025			
ACL_4	230657.24	257679.74	230657.16	257679.77	0.082	-0.031	0.088			
ACL_5	241998.44	257850.14	241998.37	257850.08	0.069	0.057	0.090			
ACL_6	236971.48	261614.34	236971.46	261614.38	0.016	-0.044	0.046			
RMSEeasting		0.06	Meters							
RMSEnorthing		0.04	Meters							
RMSEr		0.07	Meters							
Accuracyr		0.11	Meters							
FGDC-STD-007.3	3-1998									
RMSEnorthing =	√ [∑ (CONTR	OLnorthing - N	1EASUREDnort	hing)^2/n]						
RMSEeasting = v	/ [∑ (CONTRO	Leasting - MEA	SUREDeasting	;)^2/n]						
RMSEr = √ [RMSEeasting^2 + RMSEnorthing^2]										
Accuracyr = 1.73	308 * RMSEr									
Coordinates in N	NAD1983(2011	.) State Plane I	Puerto Rico Vir	gin Islands FIP	S 5200 Mete	ers				

Orthoimagery Accuracy Calculations

5.6 Mosaic

The mosaicing of the L2 images was accomplished in the inpho OrthoVista Seam Editor (OrthoVista SE) software. Photogrammetric technicians manually placed seamlines using heads-up digitization techniques in OrthoVista SE. Use of OrthoVista SE allowed the technicians to see the resulting mosaic in real-time during editing, minimizing the number edits for seam placement required once tiles are clipped from the mosaic. Technicians placed the seams so as to utilize the most nadir portion of each orthoimage, while avoiding clipping of above ground features wherever possible. The manually placed seams were stored in seam definition files and applied during the tile clipping process in OrthoVista.

Color adjustment of the atmospherically corrected, 12-bit dynamic range L2 ADS strips, for storage and viewing as 8-bits per channel GeoTIFF images, was applied in the final processing step before individual orthoimages were clipped from the mosaic. The L2 strips generated from the PictoVera processing block were loaded into OrthoVista to perform the color adjustment, which allowed visual as well as numerical inspection of calculated color corrections in real-time, before the corrections were actually applied to the images. Color adjustments were calculated using the Radiometrix module in the OrthoVista software. The Radiometrix module was used to define a non-linear, splined curve histogram stretch to transform the 12-bit dynamic range of the L2 strip to the full dynamic range of the 16-bit GeoTIFF. The histogram stretch generally reflects a natural logarithm function; this is necessary to accommodate the way in which the human eye perceives light.

OrthoVista software was used to apply the seamlines and histogram stretch to generate the final 8-bit 4band mosaic. The areas outside of the project area boundary were set to display as white pixels (255, 255, 255, 255). The tiling scheme for the mosaic was a 10,000 pixel x 10,000 pixel grid. The origin of the tiling scheme was based off of the nearest 1000 meter State Plane Grid Interval, starting at origin x:229,000.000 and origin y:257,000.000.

5.7 Stereo Imagery

Stereo viewable imagery, commonly referred to as L1 images in ADS workflows, was generated for each of the 7 image channels collected during the survey missions using the PictoVera stereo rectification module. L1 images are rectified from the L0 images to remove the effects of sensor and platform motion during flight. The L1 images have the manufacturer's radiometric correction and 8-bit color adjustments applied, but do not have corrections for atmosphere or haze applied, as these corrections can cause parallax error in the stereo rectified imagery. The three panchromatic images are stored in separate single band images for each channel. The four multi-spectral images at nadir are combined into a single four-band image for natural color and/or false color-infrared viewing.

There are several considerations for utilization of the stereo imagery in the DAT/EM Summit Evolution software. The stereo rectification module writes the final adjusted EO values to the .ODF files (orientation data files), so the .ODF.ADJ files produced in some ADS workflows are not needed for accurate stereo mensuration. The Leica definition for the .ODF file assumes elevations referenced to the ellipsoid, so the stereo plotter software must be configured to apply a geoid height model to perform stereo mensuration with an orthometric height reference. The Summit Evolution project should be configured using the "ADS 40/80 Using Leica Kit" option in the New Project dialog. Summit Evolution requires overviews for ADS L1 images in its proprietary .PYR file format; these should be created during project setup. The "Combine Split Imagery Blocks" option should be selected during Summit Evolution project setup to ensure proper stereo display of the full ADS L1 image strip.

Appendix A: Flight Logs

PremierGer	2					FLIG	SHT L	.0G -	ADS	IMA	AGE ACQ	UISITIO	N					
Company			Oper	ator				Pilot				Date (mm/c	d/yyyy) Day	of Year	Pri	oject		
Premier G	ieospati	ial	AL	COBUS				мсро	NALD			3/13/2	013	72	2 P	uerto F	Rico	
Aircraf	t	Hobbs Start	Hobbs End	Hobbs Total	hr		Sensor Se	rial and Mod	lel		Local Start	Local Stop	UTC	2 Start	UTC Sto	op	FPD/FDA File	e
N246	ИР	3733.7	3735.9	2.2	Se	erial: 13	326	Mode	el: SH51		14:10:00	16:38:3	3 18::	10:00	20:38	:33	PUERTORI	со
CORS						GPS Base S	itation											
Yes 🗖	No [X Site	ID:	Site ID:		PID:	PUR1		Rx: GX	(1220) A	nt: AX1202	. A	int Hgt: 1	1.795	Obs	5. File:PUR1.201	.30313
Departure Airport	t	Arrival Air	port	Visibili	ty	Ceiling	Cloud Cove	ir	Gr	nd Temp	Grnd Pres	Alt Temp	Alt Pres	MM #	MN	VI GB Start	MM GB End	Total GB
TJIG		TJIG		10mi	CL	R		0%		29C	30.01in			1		777	665	112
GSD	Т	arget Grnd Spee	ed	AGL	Avg.	Ground Elev		MS	iL	Sensor	Config		SEDNOO	152/82 ONLY				
4"		155kts	2	975ft	:	325ft		330	Oft				BLUNOO				B16 GRNB	
ASCOT #	FPES #	# Dir	Start UTC	Stop UTC	ІТ	GS	# Sat's	PDOP	Alt	Note	es Fixed IT 1.25	/ Raw Applic	ation Class					
	PR01	E	18:35:11	18:39:01	1.25	112	7	1.1	3189			Clea	ır. Raw App	lication Cl	ass. Fixed	IT 1.25m	ns	
	PR02	w	18:41:39	18:41:41	x	x	×	х	x		Cle	ear. Image Da	ata Gap afte	er line sta	rt - Aborte	ed and re	estarted line.	
	PR02	w	18:45:43	18:49:20	1.25	128	7	2.1	3256					Clear				
	PR03	E	18:52:05	18:56:08	1.25	111	8	1.9	3284				С	lear. IT wa	arning			
	PR04	w	18:59:02	19:02:26	1.25	141	8	1.9	3270			Clea	r. Switched	to Standa	rd Applica	ation Clas	SS.	
	PR05	E	19:04:59	19:08:41	1.25	115	8	1.9	3276				Clear. IT w	arning 2m	i from eas	st end		
	PR06	w	19:11:02	19:14:40	1.25	128	9	1.7	3242				Clear. IT w	arning 2m	i from eas	st end		
	PR07	E	19:17:21	19:21:02	1.25	120	8	1.8	3243				Clear. IT w	arning 2m	i from eas	st end		
	PR08	W	19:23:33	19:27:09	1.25	129	8	1.9	3234					Clear				
	PR09	E	19:29:26	19:33:08	1.25	119	8	1.9	3248					Clear				
	PR10	W	19:35:41	19:39:14	1.25	130	8	2	3242	-				Clouds	s			
	PR11	E	19:42:14	19:45:55	1.25	120	8	2	3312	-			Clouds. Sha	dows 1-2n	ni from ea	ast end		
	PR12		19:48:27	19:52:04	1.25	122	8	2.1	3317	-			Cloude Sh		s i from one	at and		
	DR1/		20.00.49	20:04:17	1.25	120	° 0	1.6	2208	+			Clouds Sha	adows 2m	i from eas	st end		
	PR15	F	20:00:43	20.04.17	1.25	121	9	1.0	3329	-			Clouds Sha	dows 1-4n	ni from ea	ast end		
	PR16	w	20:13:30	20:16:47	1.25	135	9	1.8	3332	Clouds: 1 3 5mi from east end								
	PR17	E	20:19:43	20:23:40	1.25	120	9	1.8	3304	Clouds. 2, 3, 4-6mi from west end								
													Enc	ded for Su	n Angle			
															-			
			1															

PremierGeo	2					FLIG	SHT L	.0G -	ADS	IMA	GE ACQ	UISITIO	N				
Company			Ope	rator				Pilot				Date (mm/c	id/yyyy) Day o	f Year	Project		
Premier G	ieospat	ial	JA	COBUS				MCDC	NALD			3/14/2	2013	73	B Puert	o Rico	
Aircraf	t	Hobbs Start	Hobbs End	Hobbs Total	hr		Sensor Se	rial and Mod	el		Local Start	Local Stop	UTC	Start	UTC Stop	FPD;	FDA File
N246	ИР	3735.9	3736.9	1.0	Se	erial: 13	326	Mode	l: SH51		15:35:20	16:46:2	8 19:3	5:28	20:46:28	PUER	TORICO
cors Ves	ΝοΓ	X Site	ıD·	Site ID:		GPS Base S	tation PLIR1		Rx: GX	1220	Δ	nt: AX1202	γ Δr	nt Høt∙′	1 826 0	bs File PUR1	20130314
Departure Airport		Arrival Air	port	Visibili	ty	Ceiling	Cloud Cove	r	Gr	nd Temp	Grnd Pres	Alt Temp	Alt Pres	MM #	MM GB Sta	rt MM GB E	d Total GB
TJIG		TJIG		20mi	SC	т5К		30%	:	29C	29.93in			1	665	636	29
GSD	Т	arget Grnd Spee	ed	AGL	Avg.	Ground Elev		MS	L	Sensor (Config		SHS	52/82 ONLY			
4"		155kts	3	075ft	3	325ft		340	Oft	PANF27 PANF02A REDN00 GRN00 REDB16 GRNB16 PANB14 PANF02B BLUN00 NIRN00 BLUB16 NIRB16						NIRB16	
ASCOT #	FPES #	# Dir	Start UTC	Stop UTC	IT	GS	# Sat's	PDOP	Alt	Note	s Fixed IT 1.25	/ STD Applic	ation Class				
	PR19	E	19:57:29	20:00:38	1.25	156	9	1.6	3330			Clouds. Clo	ud Shadows	3.5, 4.5,	6.3, 7, 8mi fron	n west end.	
	PR20	w	20:03:04	20:06:15	1.25	152	9	1.7	3307			Clou	ds. Cloud sha	adows 1.	5-2mi from eas	t end	
	PR18	E	20:08:46	20:12:08	1.25	156	9	1.8	3316			Cloud	s. Cloud shad	dows 1.5,	3-8mi from we	est end	
	PR16	w	20:14:21	20:17:30	1.25	143	9	1.8	3380	Clouds. Cloud shadows 1, 5-6, 8.5mi from east end							
	PR17	E	20:20:07	20:23:16	1.25	142	9	1.9	3378	Clouds. Cloud shadows 1.4, 3-7mi from west end							
	PR14	w	20:25:39	20:28:38	1.25	156	9	1.9	3376				Clouds	. No shad	lows seen.		
													End	ed for Su	n Angle		

PremierGer	0						FLIG	SHT L	.0G -	ADS	IMA	GE ACQ	UISITIO	N					
Company				Oper	ator				Pilot				Date (mm/d	ld/yyyy) Day	of Year	Project	i		
Premier G	ieospat	tial		JAU	COBUS				мсро	NALD			3/15/2	2013	74	l Pue	rto Ri	ico	
Aircraf	t	Hob	bs Start	Hobbs End	Hobbs Total	hr		Sensor Se	rial and Mod	lel		Local Start	Local Stop	UTC	Start	UTC Stop		FPD/FDA File	e
N246	MP	37	36.9	3737.6	0.7	Se	erial: 13	326	Mode	el: SH51		8:47:20	9:44:24	12:4	7:20	13:44:24	L I	PUERTORICO	94inch
CORS							GPS Base S	itation											
Yes 🗖	No	Х	Site I	D:	Site ID:		PID:	PUR1		Rx: GX	1220	Ai	nt: AX1202	A	nt Hgt:	1.800	Obs.	File:PUR1.201	.30315
Departure Airport	t	А	Arrival Airp	ort	Visibili	ty	Ceiling	Cloud Cove	r	Gr	nd Temp	Grnd Pres	Alt Temp	Alt Pres	MM #	MM GB	Start	MM GB End	Total GB
TJIG		٦	TJIG		20mi	SC	T5K		40%		25C	30.01in			1	63	6	617	19
GSD		Target G	Grnd Speed	1	AGL	Avg.	Ground Elev	·.	MS	iL	Sensor	Config		SH	52/82 ONLY				
4"		15	0kts	3	123ft	3	377ft		350	Oft	PA PA	NF27 🔛 PA NB14 🛄 PA		BLUN00			BLUB	316 🔛 GRNB 316 🥅 NIRB1	16 🛄
ASCOT #	FPES	#	Dir	Start UTC	Stop UTC	IT	GS	# Sat's	PDOP	Alt	Note	es Fixed IT 1.25	/ STD Applic	ation Class					
	PR20)	Е	13:08:02	13:11:11	1.25	145	7	2.6	3400					Clear				
	PR19	Ð	W	13:14:01	13:17:03	1.25	151	7	2.7	3418					Clear				
	PR18	3	E	13:20:15	13:23:25	1.25	137	7	2.9	3401			Cloud	ds. Cloud sh	adows 2,	4-5mi from w	vest en	nd	
	PR17	7	W	13:28:02	13:31:03	1.25	149	8	1.9	3421	Clouds. Cloud shadows 4, 5, 7, 8mi from west end								
											Ended for clouds entire project								
		_																	
		$ \rightarrow$																	
		-																	
		_																	
		-+																	
		_																	
		-+									-								

3/15/2013 - Lift 1

PremierGe	2					FLIC	SHT L	.0G -	ADS	IMA	GE ACQ	UISITIC	N					
Company			Ope	rator				Pilot				Date (mm/	dd/yyyy) Da	y of Year		Project		
Premier G	ieospat	ial	AL	COBUS				мсро	NALD			3/15/2	2013	7	4	Puerto	Rico	
Aircraf	t	Hobbs Start	Hobbs End	Hobbs Total	hr		Sensor Se	rial and Mod	lel		Local Start	Local Stop	0.	C Start	UTC	Stop	FPD/FDA Fil	e
N246	ИP	3737.6	3739.5	1.9	Se	erial: 13	326	Mode	el: SH51		14:31:53	16:37:2	3 18:	31:53	20:3	37:23	PUERTORICO	04inch
CORS						GPS Base S	Station											
Yes	No L	x Site	ID:	Site ID:		PID:	PUR1	_	Rx: GX	(1220	A	nt: AX1202	2 /	Ant Hgt:	1.800	Ob	s. File:PUR1.201	130315
	L .		роп					1 - 0/	G			Alt Temp	Alt Pres	1				
IJG				IUMI	Fe	W 5K		15%		300	29.97In					617	542	/5
GSD	'	arget Grnd Spee		AGL	Avg.	Ground Elev		1013		PA	NF27 D PA	ANF02A	REDN00		RN00	E REI	DB16 🔲 GRNB	16
4"		155kts	3	123ft		69ft		350	Oft	PAN	NB14 🔲 PA	ANF02B	BLUN00		IRN00	BLU	JB16 DINIRB	16
ASCOT #	FPES #	# Dir	Start UTC	Stop UTC	IT	GS	# Sat's	PDOP	Alt	Note	s Fixed IT 1.25	5 / STD Applic	ation Class					
Lift 2	PR10F	R E	18:52:37	18:55:37	1.25	155	8	1.9	3355			1	Clear. IT wa	irning 1.5r	mi from	west end		
	PR11F	R W	18:58:51	19:01:49	1.25	147	8	1.9	3363			C	lear. IT wa	ning 3, 4.	3mi fron	n east end		
	PR12F	RΕ	19:04:23	19:07:23	1.25	153	9	1.7	3354				Clear. IT w	arning 5m	ni from v	vest end		
	PR13F	R W	19:09:36	19:12:34	1.25	147	8	1.8	3339	Clear. IT warning 4mi from west end								
	PR14F	R E	19:14:59	19:18:01	1.25	151	8	1.9	3355	Clear								
	PR15F	R W	19:20:12	19:23:15	1.25	153	8	1.9	3313				Cloud sh	adow 3mi	from we	est end		
	PR16F	R E	19:25:45	19:29:08	1.25	132	8	2.0	3354				Cloud sha	dow 5, 6m	ni from e	east end		
	PR17F	≀ w	19:31:46	19:34:48	1.25	145	8	2.0	3316				Cloud sh	adow 5mi	from we	est end		
	PR18F	R E	19:37:29	19:40:37	1.25	143	8	2.1	3342				Cloud sha	dow 2-3m	i from w	vest end		
	PR15F	R W	19:44:11	19:47:14	1.25	146	8	2.1	3342					Clea	r			
	PR16F	R E	19:50:01	19:53:15	1.25	135	9	1.7	3369					Clea	r			
	PR17F	R W	19:55:31	19:58:35	1.25	151	9	1.6	3328					Clea	r			
	PR18F	R E	20:01:04	20:04:17	1.25	139	9	1.7	3390				Cloud shac	ow 0-0.3r	ni from v	west end		
	PR02F	R W	20:11:35	20:14:29	1.25	152	9	1.8	3347			Cle	ear. Flew ir	raw mod	e on pre	evious fligh	it	
	PR03F	R E	20:17:03	20:19:58	1.25	151	9	1.9	3357			Cl	ear. Flew ir	raw mod	e on pre	evious fligh	t	
	PR01F	≀ W	20:22:05	20:25:04	1.25	151	9	1.9	3369		Cle	ar. IT warning	g underexp	osure. Fle	w in raw	/ mode on	previous flight	
													Er	ided for su	un angle			
										_								
		_								_								

3/15/2013 - Lift 2

Appendix B: Base Station Datasheet

FILE: PUR1.20130313_PIX1_0313_105221.130 0P1363365721888

NGS OPUS SOLUTION REPORT

All computed coordinate accuracies are listed as peak-to-peak values. For additional information: http://www.ngs.noaa.gov/OPUS/about.jsp#accuracy

USER: mark.oneal@premiergeospatial.com	DATE: March 15, 2013
RINEX FILE: pur1072r.130	TIME: 16:45:38 UTC

 SOFTWARE: page5
 1209.04 master73.pl 082112
 START: 2013/03/13
 17:53:00

 EPHEMERIS: igr17313.eph [rapid]
 STOP: 2013/03/13
 22:41:00

 NAV FILE: brdc0720.13n
 OBS USED: 11010 / 11318
 97%

 ANT NAME: LEIAX1202
 NONE
 # FIXED AMB: 62 / 64
 97%

 ARP HEIGHT: 1.795
 OVERALL RMS: 0.012(m)

REF FRAME: NAD_83(2011)(EPOCH:2010.0000)

IGS08 (EPOCH:2013.1968)

X:	2451909.097(m)	0.019(m)	2451908.406(m)	0.019(m)
Y:	-5533164.238(m)	0.017(m)	-5533162.431(m)	0.017(m)
Z:	2006295.418(m)	0.018(m)	2006295.286(m)	0.018(m)

LAT: 18 27 21.09093 18 27 21.10675 0.024(m)0.024(m) E LON: 293 53 58.38625 0.015(m) 293 53 58.38967 0.015(m) 0.015(m) WLON: 66 6 1.61375 0.015(m) 66 6 1.61033 EL HGT: -40.564(m) 0.014(m) -42.438(m) 0.014(m) ORTHO HGT: 2.333(m) 0.024(m) [H = h-N (N = GEOID12A HGT)]

UTM COORDINATES STATE PLANE COORDINATES SPC (5200 PRVI) UTM (Zone 19) Northing (Y) [meters] 2043075.916 268934.336 Easting (X) [meters] 806261.009 235162.524 Convergence [degrees] 0.91864115 0.10415581 Point Scale 1.00075973 1.00000144 **Combined Factor** 1.00076611 1.00000782

US NATIONAL GRID DESIGNATOR: 19QHA0626143075(NAD 83)

BASE STATIONS USED

 PID
 DESIGNATION
 LATITUDE
 LONGITUDE DISTANCE(m)

 DL7810
 PRHL BAYAMON CORS ARP
 N182248.091
 W0660912.812
 10096.5

 DL6657
 PRN4 4N INC CORS ARP
 N180442.915
 W0662208.704
 50504.4

 DL9080
 PRLP LAS PIEDRAS CORS ARP
 N181141.627
 W0655205.750
 37904.1

NEAREST	NGS PUBLISHED CO	NTROL POINT	
TV0985	GRANDE 1966	N182714.843 W0660608.678	283.3

Appendix C: Base Station Logsheets

GPS SURVEY LOGSHEET											
	<u>Proj</u> e	ect Inf	forr	nation							
Project Code:											
State/County:	Puerto	Rico)								
GPS Operator:	Jacobi	JS									
	<u>Recei</u>	ver In	for	<u>mation</u>							
Serial Number:	46569	7									
Receiver Mode	l: Leica (GX12	220)							
Antenna Information											
Serial Number:	705010	07									
Antenna Model: Leica AX1202											
<u>Antenna He</u>	eight (Slant)			<u>Antenna Hei</u>	ght (Vertical)						
Measured	Fixed			Measured	Fixed						
(Meters/Feet)	(Meters/F	eet)	(№	leters/Feet)	(Meters/Feet)						
			1	435 m	1.795m						
	<u>Approx</u>	imate	e Po	sitioning							
Latitude:	18 27	7 21.	27:	243 N							
Longitude:	066 (06 01	1.6	2827 W							
Ellipsoidal Heig	^{ht:} -39.2	98m									
Flush		>	<								
Above Ground:				Meters/Fee	t						
Below Ground:				Meters/Fee	t						

Date:	3/13/13		
Start Time:	1353hrs		
End Time:	1841hrs		
Control Poin	t: PUR1		
	<u>Aerial</u> Target		Photo I.D.
	<u>Published</u> <u>Benchmark</u>	X	<u>New</u> <u>Control</u>
	<u>Published</u> <u>Control</u>		LIDAR
×	<u>Base</u> Station		<u>Other</u>
	<u>Ske</u>	<u>tch</u>	
	× · · · · · · · · · · · · · · · · · · ·	se Staion set un Here	
			1.94

Description of Control Point:

Temporary Benchmark, flush with ground, at TJIG airport, south of runway, near taxiway

15000 W. 64th Ave. - Arvada Colorado 80007

3/13/2013 - Page 2

15000 W. 64th Ave. - Arvada Colorado 80007

3/14/2013 - Page 1

GPS SURVEY LOGSHEET											
	<u>Proj</u>	ect In	forı	<u>mation</u>							
Project Code:											
State/County:	Puerto	Rico	>								
GPS Operator:	Jacob	us									
	<u>Rece</u>	iver Ir	nfor	mation							
Serial Number:	46569	7									
Receiver Mode	^{I:} Leica	GX12	220)							
Antenna Information											
Serial Number: 7050107											
Antenna Model: Leica AX1202											
<u>Antenna He</u>	eight (Slant)			<u>Antenna Hei</u>	ght (Vertical)						
Measured	Fixed			Measured	Fixed						
(Meters/Feet)	(Meters/F	eet)	(N	Aeters/Feet)	(Meters/Feet)						
			1.	466 m	1.826m						
	<u>Approx</u>	kimate	e Po	ositioning							
Latitude:	18 2	7 21.	18	675 N							
Longitude:	066	06 01	1.6	0422 W							
Ellipsoidal Heig	^{ht:} -42.5	57294	4m								
Flush		2	ĸ								
Above Ground:				Meters/Fee	t						
Below Ground:				Meters/Fee	t						

Date:	3/14/13		
Start Time:	0925hrs		
End Time:	1649hrs		
Control Poin	<u>t:</u> PUR1		
	<u>Aerial</u>		Photo
	<u>Target</u>		<u>I.D.</u>
	<u>Published</u>		<u>New</u>
	<u>Benchmark</u>	×	<u>Control</u>
	<u>Published</u>		LIDAR
	<u>Control</u>		
	<u>Base</u>		<u>Other</u>
×	<u>Station</u>		
	<u>Ske</u>	<u>tch</u>	
and the second s			and the second second

Description of Control Point:

Temporary Benchmark, flush with ground, at TJIG airport, south of runway, near taxiway

15000 W. 64th Ave. - Arvada Colorado 80007

15000 W. 64th Ave. - Arvada Colorado 80007

GPS SURVEY LOGSHEET					
Project Information					
Project Code:					
State/County:	Puerto Rico	D			
GPS Operator:	Jacobus				
	<u>Receiver Ir</u>	nformation			
Serial Number:	465697				
Receiver Mode	^{I:} Leica GX12	220			
	<u>Antenna Ir</u>	nformation			
Serial Number:	7050107				
Antenna Mode	^{l:} Leica AX12	202			
<u>Antenna He</u>	eight (Slant)	<u>Antenna He</u>	ight (Vertical)		
Measured	Fixed	Measured	Fixed		
(Meters/Feet)	(Meters/Feet)	(Meters/Feet)	(Meters/Feet)		
		1.440m	1.800m		
	<u>Approximate</u>	e Positioning			
Latitude:	18 27 21.	24965 N			
Longitude:	066 06 0 [,]	1.59898 W			
Ellipsoidal Height: -39.576m					
Flush					
Above Ground:		Meters/Fee	et		
Below Ground:		Meters/Fee	et		

Description of Control Point:

Temporary Benchmark, flush with ground, at TJIG airport, south of runway, near taxiway

15000 W. 64th Ave. - Arvada Colorado 80007

3/15/2013 - Page 2

15000 W. 64th Ave. - Arvada Colorado 80007

Appendix D: Sensor Calibration Report

LEICA ADS40 Calibration Certificate

This certificate is valid for SH51 1326 CU40 1141 IMU Serial Number Inspector CUS6 56025781 Calibration certificate issued on 09 August 2010 by Muzaffer Adigüzel Certificate and calibration data ID 870107_1326_100809-1 Document code 870107 Leica Geosystems AG Heinrich-Wild-Strasse 9435 Heerbrugg Geosystems Switzerland

Components

Component	Device	Туре	Serial Number
SH51 # 1326 CU40 # 1141	Lens system Focal Plate Module cover Focal Plate Module (FPM) Inertial Measurement Unit Positioning system incl.GPS/GLONASS	DO64-810000 FCO FPM-A µIRS IPAS	21955 / 0018 63 63 56025781 1373

Nominal FPM layout of tested system

End pixel coordinates are center of pixel coordinates. Middle coordinates are between pixels 6000 and 6001. All values in [mm]

Line Name	Х	Y, Pixel 1	Y, Center	Y, Pixel 12000
PANF27A	32.18400	-38.99675	0.00000	38.99675
PANF02B	02.21000	-38.99345	0.00330	39.00005
PANF02A	02.18400	-38.99675	0.00000	38.99675
REDN00A	00.01300	-38.99345	0.00330	39.00005
GRNN00A	-00.01300	-38.99675	0.00000	38.99675
BLUN00A	00.0000	-38.99345	0.00330	39.00005
NIRN00A	00.00000	-38.99675	0.00000	38.99675
PANB14A	-15.81600	-38.99675	0.00000	38.99675

View from top of Sensor Head

Certificate and calibration data ID: 1326-100809-1

Page 2 of 5

Calibration process

Adjustment of optical systems in optical laboratory

	Passed	Date	Inspector
DSNU (Dark Signal Non Uniformity)	ok	09.08.2010	Bernhard Riedl
PRNU (Photo Response Non Uniformity)	ok	09.08.2010	Bernhard Riedl
MTF	ok	09.08.2010	Bernhard Riedl
Best image plane	ok	09.08.2010	Bernhard Riedl

Flight and data processing

	Passed	Date	Inspector
Test flight	ok	25.06.2010	Deniz Arslan
GNSS and IMU data processing	ok	06.07.2010	Fernando Schapira
IMU accelerometer biases	ok	09.08.2010	Muzaffer Adigüzel
IMU latency	ok	09.08.2010	Muzaffer Adigüzel
Image data processing	ok	02.08.2010	Muzaffer Adigüzel
Geometrical calibration	ok	09.08.2010	Muzaffer Adigüzel

Inspection

Inspectors

Name	Bernhard Riedl 09.08.2010		A.MONI
Position	ADS Production Manager		Mud Einhard
	1		
Name	Gert Ferrano	09.08.2010	IRAFO CO
Position	ADS System Engineer		golung
Name	Udo Tempelmann	09.08.2010	
Position	ADS Software Manager		Udo Tomb
		•	

LEICA ADS40 calibration process specification

	Document code
Inspection plan	862100
Leica ADS40 system calibration process	870106

Maintenance

Last date of service	
Recommendations	

Certificate and calibration data ID: 1326-100809-1

Page 3 of 5

Results of geometrical calibration

Calibrated apparent pixel coordinates for all sensor lines are contained on the calibration file attached to this certificate. File: **1326-100809-1**.zip

Stereo lines

A-lines	PANF27A	PANF02A	PANB14A
Calibration method	Estimation of additional parameters in		
	simuitaneous	oundie adjustr	nent
Sigma naught of bundle adjustment	1.3 micron		
Mean local redundancy	> 0.5		
Accuracy of calibrated apparent pixel coordinates	±1.0 micron		

Final bundle adjustment result after elimination of tie point blunders and before introduction of ground control:

Certificate and calibration data ID: 1326-100809-1

Page 4 of 5

Color lines

Included lines Calibration method	BLUN00A Optimal robi	REDN00A ust polynomia	GRNN00 1 fit of tie po	NIRN00A int residuals
	from bundle	adjustment		
Mean accuracy of estimated fit for:		-		
Blue, Green, Red	±1.3 micron	ı		
NIR	± 1.0 micron	1		
Accuracy of apparent pixel-coordinates	± 1 micron			

Llines of staggered panchromatic line pair

B-lines Calibration method

PANF02B Transfer of A-lines results, using the known offset of the staggered lines Accuracy of apparent pixel coordinates Same as for A Relative accuracy between the lines of a staggered pair ± 0.5 micron Same as for A-lines

Certificate and calibration data ID: 1326-100809-1

Page 5 of 5

Appendix E: Survey Map

